

A143811


Number of numbers k<p such that k^(p1)1 is divisible by p^2, p = prime(n).


1



1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 3, 3, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 2, 1, 2, 2, 3, 2, 1, 3, 2, 1, 2, 1, 2, 2, 4, 1, 1, 2, 2, 2, 2, 1, 3, 1, 4, 1, 3, 3, 3, 3, 3, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 3, 1, 1, 5, 1, 2, 1, 3, 2, 2, 1, 2, 2, 2, 1, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Note that a(n)>0 because k=1 is always a solution. The primes for which a(n)>1 are given in A134307. The values of k are the terms <p in row n of A143548. The largest known terms in this sequence are for the Wieferich primes 1093 and 3511, for which we have a(183)=11 and a(490)=12, respectively. It is not hard to show that k=p1 is never a solution for odd prime p. In fact, (p1)^(p1)=p+1 (mod p^2) for odd prime p.


LINKS

T. D. Noe, Table of n, a(n) for n=1..10000


MATHEMATICA

Table[p=Prime[n]; s=Select[Range[p1], PowerMod[ #, p1, p^2]==1&]; Length[s], {n, 100}]


CROSSREFS

Sequence in context: A328391 A109393 A030348 * A109673 A023591 A165661
Adjacent sequences: A143808 A143809 A143810 * A143812 A143813 A143814


KEYWORD

nonn


AUTHOR

T. D. Noe, Sep 02 2008


STATUS

approved



