Person, Number, and the Architecture of Grammar

PART THREE: Omnivorous agreement and its consequences

Omer Preminger, University of Maryland

LOT 2018, Groningen

<table>
<thead>
<tr>
<th>The K'ichean languages and the Agent-Focus construction</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayan</td>
<td>3</td>
</tr>
<tr>
<td>K'ichean languages</td>
<td>5</td>
</tr>
<tr>
<td>The Agent-Focus construction</td>
<td>11</td>
</tr>
<tr>
<td>ϕ-agreement in K'ichean AF.</td>
<td>15</td>
</tr>
<tr>
<td>The AF Person Restriction</td>
<td>21</td>
</tr>
<tr>
<td>Against a ‘salience’ hierarchy</td>
<td>23</td>
</tr>
<tr>
<td>If not ‘salience’, then what?</td>
<td>32</td>
</tr>
<tr>
<td>What’s good for [wh] is good for [Group] & [Participant], too</td>
<td>36</td>
</tr>
<tr>
<td>What’s good for [wh] is good for [Group] & [Participant], too</td>
<td>37</td>
</tr>
<tr>
<td>What’s good for [wh] is good for [Group] & [Participant], too</td>
<td>38</td>
</tr>
<tr>
<td>What’s good for [wh] is good for [Group] & [Participant], too</td>
<td>39</td>
</tr>
<tr>
<td>What’s good for [wh] is good for [Group] & [Participant], too</td>
<td>40</td>
</tr>
<tr>
<td>Analysis</td>
<td>41</td>
</tr>
<tr>
<td>Interim summary</td>
<td>50</td>
</tr>
</tbody>
</table>

Consequences	54
Overview	55
Failed probing ⇒ “crash”?	56
References	61
The K’ichean languages and the Agent-Focus construction

Mayan

- Mayan:
 - more than 6 million speakers today (Bennett, Coon & Henderson 2016)
 - spoken in Guatemala, Mexico, and Belize

SOURCE: http://en.wikipedia.org/
Mayan

- vast language family, whose common ancestor is dated ~2000 BC
K’ichean languages

- K’ichean:
 - a sub-branch of the Mayan language family, spoken in the Guatemalan highlands

SOURCE: http://langscape.umd.edu/
K’ichean languages

- The K’ichean branch, narrowly defined, includes 4 languages:
 - Achi’, Kaqchikel, K’iche’, and Tz’utujil
 - approx. 2.8 million speakers in total

K’ichean languages

- Like all other Mayan languages, the K’ichean languages are:
 - head-marking
 - lacking any dependent-marking whatsoever
 - underlingly head-initial
 - and often verb-/predicate-initial (VSO/VOS), though not always
 - left-peripheral topic & focus positions

(pictured: the roofs of Patzún; Chimaltenango department, Guatemala)
K’ichean languages

- the languages show an **ergative** alignment in their head-marking (=verbal agreement markers)

\[(1)\]

\[\begin{array}{c|c}
\text{NOMINATIVE-ACCUSATIVE ALIGNMENT} & \text{ERGATIVE-ABSOLUTIVE ALIGNMENT} \\
\hline
\text{A} & \text{P} \\
\text{NOM} & \text{ACC} \\
\text{A} & \text{P} \\
\text{ERG} & \text{ABS}
\end{array}\]

transitive:

\[\begin{array}{c}
\text{A} \\
\text{P} \\
\text{A} \\
\text{P}
\end{array}\]

\[\begin{array}{c}
\text{S} \\
\text{NOM} \\
\text{S} \\
\text{ABS}
\end{array}\]

intransitive:

\[\begin{array}{c}
\text{S} \\
\text{NOM} \\
\text{S} \\
\text{ABS}
\end{array}\]

\[(2)\] **INTRANSITIVE**

a. ri achin x-∅-wär
 det man com-3sg.abs-sleep
 ‘The man slept.’

b. yïn x-ι-wär
 me com-1sg.abs-sleep
 ‘I slept.’

\[(3)\] **TRANSITIVE**

a. yïn x-∅-inw-axa-j
 me com-3sg.abs-1sg.erg-hear-tv det man
 ‘I heard the man.’

b. ri achin x-ι-ɾ-axa-j yïn
 det man com-1sg.abs-3sg.erg-hear-tv *me*
 ‘The man heard me.’

The Agent-Focus construction

- Like some (but not all) of the Mayan languages, the K’ichean languages exhibit so-called “syntactic ergativity” —
 - they prohibit the formation of A-bar dependencies (wh-movement, relativization, focus movement) targeting the transitive subject

(4) achike x-∅-wâr? (Kaqchikel; Patzún dialect)
 who/what COM-3sg.ABS-sleep
 ‘Who slept?’

(5) achike x-u-∅-tēj rī a Juan?
 who/what COM-3sg.ERG-3sg.ABS-eat DET CLF Juan
 ‘What did Juan eat?’

(6) *achike x-u-∅-lōq’ rī āk’?
 who/what COM-3sg.ERG-3sg.ABS-buy DET chicken
 Intended: ‘Who bought the chicken?’

⇒ How do you ask “Who bought the chicken” in a K’ichean language . . . ?

The Agent-Focus construction

- This is where our main protagonist, the Agent-Focus (AF) construction, comes in

- But before turning to AF proper, it’s important to note:
 - AF is just one of several means of getting around this ban
 - this is not surprising — the same is true for more familiar bans in more familiar languages:

(7) *Which dish₁ did you recognize the guy who wheeled t₁ in?

(8) a. This guyₖ, who you recognized — which dish₁ did heₖ wheel t₁ in?
 b. You recognized the guy who wheeled in which dish(, exactly)?
 c. Which dish₁ did heₖ wheel t₁ in, this guyₖ who you recognized?
 . . .

The Agent-Focus construction

- The situation is the same, then, with respect to “syntactic ergativity” in K’ichean —
 (the ban on A-bar dependencies targeting the transitive subject)
 — and the AF construction is just one of the means speakers have at their disposal to circumvent this ban
 - others include:
 the incorporation antipassive, and the absolutive antipassive

LOT 2018, Groningen
The Agent-Focus construction

- With that out of the way, let us turn to AF proper:
 - AF is associated with a particular (set of) derivational suffix(es) on the verb
 - taking the form /-ö/ or /-Vn/
 (where 'V' represents a stem-harmonic vowel)
 - I will gloss it as: “-AF”

 (9) *achike x-u-∅-löq’ ri āk’?
 who/what com-3sg.erg-3sg.abs-buy det chicken
 Intended: ‘Who bought the chicken?’ [=(6)]

 (10) achike x-∅-löq’-ö ri āk’?
 who/what com-3sg.abs-buy-AF det chicken
 ‘Who bought the chicken?’

ϕ-agreement in K’ichean AF

- AF reduces the number of agreement markers on the verb:
 - normal transitives: a single erg marker and a single abs marker
 - AF verbs: only a single abs marker (no erg marker)

- Despite the reduction in the number of agreement markers (2→1), there is no reduction
 in the number of argument DPs (still 2)

➢ And that leads to something interesting happening:
 - instead of cross-referencing the transitive object —
 (as abs agreement would normally do w/2-place verbs)
 - a “hierarchy” effect emerges:

 (11) 1st/2nd person ≫ 3rd person plural ≫ 3rd person singular

- descriptively, the argument that controls agreement is determined according to (11)

ϕ-agreement in K’ichean AF

- This raises the question of whether the hierarchy in (11) is a primitive of grammar —
 - or rather, an emergent property, derivable from more basic grammatical building
 blocks

- Later on, I’ll argue that it is the latter

But first, let’s see this system in action…
\(\phi\)-agreement in K'ichean AF

(12) \(1\text{sg} \gg 3\text{sg}\)

a. ja yën x-in-ax-an rja'
 FOC me COM-1\text{sg}.ABS-hear-\text{AF} him/her
 'It was me that heard him/her.'

b. ja rja' x-in-ax-an yën
 FOC him/her COM-1\text{sg}.ABS-hear-\text{AF} me
 'It was him/her that heard me.'

(13) \(2\text{sg} \gg 3\text{sg}\)

a. ja rat x-at-ax-an rja'
 FOC you(sg.) COM-2\text{sg}.ABS-hear-\text{AF} him/her
 'It was you(sg.) that heard him/her.'

b. ja rja' x-at-ax-an rat
 FOC him/her COM-2\text{sg}.ABS-hear-\text{AF} you(sg.)
 'It was him/her that heard you(sg.).'

- In (12–14), we see a marker (e.g. e'-) that occurs whenever the relevant feature (e.g. [Group]) is found on the subject or on the object (or, as we will see later: both)

 ➢ This is the behavior known as omnivorous agreement (Nevins 2011).

(14) \(3\text{pl} \gg 3\text{sg}\)

a. ja rje' x-e'-ax-an rja'
 FOC them COM-3\text{pl}.ABS-hear-\text{AF} him/her
 'It was them that heard him/her.'

b. ja rja' x-e'-ax-an rje'
 FOC him/her COM-3\text{pl}.ABS-hear-\text{AF} them
 'It was him/her that heard them.'

\(\phi\)-agreement in K'ichean AF

(15) *both args 3\text{sg}*

a. ja ri tz'i' x-∅-etzel-an ri sian
 FOC the dog COM-3\text{sg}.ABS-hate-\text{AF} the cat
 'It was the dog that hated the cat.'

b. ja ri xoq x-∅-tz'et-∅ ri achin
 FOC the woman COM-3\text{sg}.ABS-see-\text{AF} the man
 'It was the woman who saw the man.'
\(\varphi\)-agreement in K’ichean AF

(16) \(1SG \gg 3PL\) (\(2SG\) behaves analogously)

a. ja \(yín\) x-in-\(ax\)-\(an\) \(rje’\)
 \(\text{FOC me COM-1SG.ABS-hear-AF them} \)
 ‘It was me that heard them.’

b. ja \(rje’\) x-in-\(ax\)-\(an\) \(yín\)
 \(\text{FOC them COM-1SG.ABS-hear-AF me} \)
 ‘It was them that heard me.’

(17) \(1PL \gg 3SG\) (\(2PL\) behaves analogously)

a. ja \(rőj\) x-oj-\(ax\)-\(an\) \(rja’\)
 \(\text{FOC US COM-1PL.ABS-hear-AF him/her} \)
 ‘It was us that heard him/her.’

b. ja \(rja’\) x-oj-\(ax\)-\(an\) \(rój\)
 \(\text{FOC him/her COM-1PL.ABS-hear-AF us} \)
 ‘It was him/her that heard us.’

\textbf{NB:} The argument chosen on the basis of PERSON controls agreement also \textit{in NUMBER} (or, if you prefer: NUMBER is “pied-piped” with PERSON)

The AF Person Restriction

- We’ve now seen all possible types of combinations except one:
 - 1st person arg and 2nd person arg, in the same AF clause
 - As it turns out: you \textbf{just can’t do that!} \textit{(regardless of agreement morphology)}

(18) a. \(^*\) \(yín\) x-in-\(ax\)-\(an\) \(rat\)
 \(\text{me COM-1SG.ABS-hear-AF you(sg.)} \)
 \textit{Intended:} ‘It was me that heard you.’

b. \(^*\) \(yín\) x-at-\(ax\)-\(an\) \(rat\)
 \(\text{me COM-2SG.ABS-hear-AF you(sg.)} \)
 \textit{Intended:} ‘It was me that heard you.’

(19) a. \(^*\) \(rat\) x-at-\(ax\)-\(an\) \(yín\)
 \(\text{you(sg.) COM-2SG.ABS-hear-AF me} \)
 \textit{Intended:} ‘It was you that heard me.’

b. \(^*\) \(rat\) x-in-\(ax\)-\(an\) \(yín\)
 \(\text{you(sg.) COM-1SG.ABS-hear-AF me} \)
 \textit{Intended:} ‘It was you that heard me.’
The AF Person Restriction

⇒ In other words:

(20) **AF Person Restriction**
In a K’ichean AF clause, at most one of the two core arguments can be 1st/2nd person.

- Importantly, there’s no corresponding restriction on multiple plurals co-occurring in AF

(21) ja **rōj** x-oj-tz’et-ō **rje’**
FOC us COM-1pl.ABS-SEE-AF them
'It was us who saw them.'

Against a ‘salience’ hierarchy

- As we have seen —
 o descriptively, agreement in K’ichean AF adheres to (11):

(11) 1st/2nd person ≫ 3rd person plural ≫ 3rd person singular

- Early accounts:
 o (11) reflects a hierarchy of “cognitive salience”

Against a ‘salience’ hierarchy

➢ I think we can dismiss this salience-based account, for a number of reasons:

(i) the flexibility to assign agreement based on alleged “cognitive salience” surfaces nowhere else in the language
 o except for AF — where information structure is the most **rigid**!
 - and remember:
 agreement in AF ≠ agreement with the focus DP
 • it depends on the DPs’ ϕ-features, completely ignoring the topic/focus structure
 ~ “salience”??
(ii) the effect is not really about the cognitive categories of speaker/addressee/etc. —
 ◦ it’s about morphosyntactic categories:
 “[K’iche’] has developed a 2nd person formal pronoun ‘la’; O.P., which does not
 behave as a 2nd person with respect to the salience hierarchy, i.e. it does not
 outrank 3rd person.”
 [Stiebels 2006:526, fn. 13]
 – this is expected if the effect is morphosyntactic — la is, in fact, calqued from
 the demonstrative series
 ◦ i.e., it is morphosyntactically 3rd person

(iii) there’s nothing about (11) that predicts two arguments with high ‘salience’
 (grammaticalized or not) wouldn’t be able to co-occur:
 (11) 1st/2nd person >> 3rd person plural >> 3rd person singular
 ◦ in fact, we’d arguably predict such combinations to be optimal, salience-wise
 ◦ and yet, as we know, such combinations are barred (a.k.a., the AF Person
 Restriction)
Against a ‘salience’ hierarchy

(iv) a device like (11) obscures an important morphological generalization:

(11) 1st/2nd person ≫ 3rd person plural ≫ 3rd person singular

- (11) is a device that factors out the choice of agreement target from the process of agreement itself; i.e. —

 INPUT: the inventory of arguments in a given clause

 OUTPUT: which one will be targeted for agreement

⇒ Prediction:

ϕ-agreement in AF should be a uniform process but for the choice of target.

Against a ‘salience’ hierarchy

➢ this prediction is false:

(22)

<table>
<thead>
<tr>
<th></th>
<th>1sg</th>
<th>1pl</th>
<th>2sg</th>
<th>2pl</th>
<th>3sg</th>
<th>3pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong pronoun</td>
<td>yïn</td>
<td>rïj</td>
<td>rat</td>
<td>rïx</td>
<td>rja'</td>
<td>rje'</td>
</tr>
<tr>
<td>agreement marker</td>
<td>(n)-</td>
<td>oj-</td>
<td>a(t)-</td>
<td>i(x)-</td>
<td>ø-</td>
<td>e(')-</td>
</tr>
</tbody>
</table>

(Kaqchikel; Patzicia dialect)

NOTE: the segment [j] is a voiceless velar fricative, not a glide

- for 1st/2nd person...

(23) agreement marker = strong pronoun - initial approximant

NB: This initial approximant is almost certainly a determiner.

- ... but not for 3rd person: *ja’, *je’!

⇒ it is simply not true that agreement in AF is a uniform process but for the choice of target
Against a ‘salience’ hierarchy

⇒ Summary:
 o Overall, the “salience hierarchy” approach (on both its strong & weak interpretations) is —
 – unexplanatory
 – descriptively inadequate

If not ‘salience’, then what?

• We need an alternative account of agreement in K’ichean AF
• Here are some initially plausible-looking accounts that end up not working well:
 o Multiple Agree
 o feature-percolation
 o a portmanteau
 (i.e., a single morpheme reflecting agreement with both arguments)
 o multiple lexical variants of the probe
 (cf.: C⁰[+decl] vs. C⁰[+decl, +wh])

(see Preminger 2014, pp. 18–20, 67–73, 89, 123–128)

If not ‘salience’, then what?

➢ Then how does agreement in K’ichean AF work?

ANSWER: probe-goal!!

(i) There are two syntactic probes in the Infl “area” in K’ichean —
 π⁰: a head that probes for PERSON features
 #⁰: a head that probes for NUMBER features

(24)
```
  #P
  #⁰  πP
  π⁰    ... 
      ... 
      ... 
  υP
```

If not ‘salience’, then what?

Note —
• π^0 and $\#^0$ might be one and the same head;
• all that’s important is that π^0 (probing for PERSON) comes first

But:
• we already have a mechanism in natural language that causes probing for feature $[f]$ to occur before probing for feature $[g]$;
 ◦ namely, placing the probe that seeks $[f]$ on a lower head than the probe that seeks $[g]$;
 ◦ the lower head will be merged into the structure first, and thus, will do its thing sooner
⇒ the simplest assumption is thus that π^0 is lower than (viz. asymmetrically c-commanded by) $\#^0$

If not ‘salience’, then what?

(ii) π^0 in K’ichean triggers clitic doubling of whatever DP it targets
• just like internal-argument π^0 in languages with PCC effects (Anagnostopoulou 2003, Béjar & Rezac 2003)

At first approximation, clitic doubling is:
• creation of a small, pronoun-like morpheme (viz. D^0)
 ◦ (usually) adjoined to a verbal head or TAM-marker
 ◦ and matching one of the arguments in ϕ-features
• lots more to say… (incl. how this differs from Jelinek’s 1984 Pronominal Argument Hypothesis)
 ➢ You are welcome to ask me.
What's good for \[wh\] is good for [Group] & [Participant], too

(25) a. \([C^0 [who]_{[wh]} \text{ gave } [\text{this dish}] \text{ to } [\text{Bob}]\]
 \[\rightarrow [C^0 [who]_{[wh]} \text{ gave } [\text{this dish}] \text{ to } [\text{Bob}]\]
 \[\rightarrow \text{Who gave this dish to Bob?}\]

b. \([C^0 [\text{John}] \text{ gave } [\text{what}]_{[wh]} \text{ to } [\text{Bob}]\]
 \[\rightarrow [C^0 [\text{John}] \text{ gave } [\text{what}]_{[wh]} \text{ to } [\text{Bob}]\]
 \[\rightarrow \text{What did John give to Bob?}\]

c. \([C^0 [\text{John}] \text{ gave } [\text{this dish}] \text{ to } [\text{who}]_{[wh]}\]
 \[\rightarrow [C^0 [\text{John}] \text{ gave } [\text{this dish}] \text{ to } [\text{who}]_{[wh]}\]
 \[\rightarrow \text{Who did John give this dish to?}\]

- Is finite \(\phi\)-agreement in English, for example, also ‘relativized’?
 - we’re not used to thinking about it in these terms;
 - interrogative \(C^0\) will “skip” a DP unless that DP bears \([+wh]\) —
 - while Infl\(^0\) in English can target any DP
 - provided that it’s the closest accessible DP under IDS

But…
 ➢ Infl\(^0\) in English does “skip” certain phrases — examples?

All probing is relativized.

- If so, then:
 We don’t really need any new theoretical apparatus to derive omnivorous agreement
 - of the kind we’ve seen in K’ichean AF
What's good for [wh] is good for [Group] & [Participant], too

- Suppose, for example, that \#0 (the number probe) in K’ichean is relativized to [Group]:

\[\text{(26)} \]

a. \[\#0 \text{[them]}_{\text{[Group]}} V^0 \text{[him]} \]
\[\to \#0 \text{[them]}_{\text{[Group]}} V^0 \text{[him]} \]
\[\quad \to \text{ja } rje’ x-e-tz’et-ö rja’ \]
\[\quad \text{FOC them COM-3pl.ABS-see-ÅF him} \]
\[\quad \text{‘It was them who saw him.’} \]
\[\text{[=(14a)]} \]

b. \[\#0 \text{[him]} V^0 \text{[them]}_{\text{[Group]}} \]
\[\to \#0 \text{[him]} V^0 \text{[them]}_{\text{[Group]}} \]
\[\quad \to \text{ja } rja’ x-e-tz’et-ö rje’ \]
\[\quad \text{FOC him COM-3pl.ABS-see-ÅF them} \]
\[\quad \text{‘It was him who saw them.’} \]
\[\text{[=(14b)]} \]

What’s good for [wh] is good for [Group] & [Participant], too

- NOTE: this assumes that at the relevant stage in the derivation, \#0 is located above both the subject & the object
 - this is a plausible assumption given what we know about the clausal syntax of these languages

Analysis

(27) BASIC CLAUSE STRUCTURE IN K’ICHEAN AF

\[\#P \quad \text{number probe} \]
\[\quad \pi P \quad \text{person probe} \]
\[\quad [\text{Group}] \]
\[\quad \pi^0 \]
\[\quad [\text{Pcpt.}] \]
\[\quad \text{SUBJ} \]
\[\quad \text{V^0} \quad \text{OBJ} \]
Analysis

(28) **STEP 1: PROBING FOR [PARTICIPANT]**

a. 1ST/2ND PERSON SUBJECT, 3RD PERSON OBJECT

b. 3RD PERSON SUBJECT, 1ST/2ND PERSON OBJECT

- ASSUMPTION: whichever nominal π^0 “hits” undergoes **clitic doubling**

 (This is not completely ad hoc; it is, in fact, the same assumption used by Béjar & Rezac 2003 to account for the Person Case Constraint.)

Analysis

(29) **STEP 1.5: CLITIC DOUBLING OF PROBED-BY-π^0 PHRASE**

- Clitics are reduced pronouns
 - we might expect them to look that way (at least sometimes)
 - we (definitely) expect them to behave monolithically w.r.t. φ-sets
 - a.k.a., the featural coarseness of clitic doubling
Analysis

➢ RECALL:

(16) 1SG \(\gg\) 3PL

a. ja yin x-in-ax-an rje'
 FOC me COM-1sg.abs-hear-AF them
 'It was me that heard them.'

b. ja rje’ x-in-ax-an yin
 FOC them COM-1sg.abs-hear-AF me
 'It was them that heard me.'

(17) 1PL \(\gg\) 3SG

a. ja röj x-oj-ax-an rja'
 FOC us COM-1pl.abs-hear-AF him/her
 'It was us that heard him/her.'

b. ja rja’ x-oj-ax-an röj
 FOC him/her COM-1pl.abs-hear-AF us
 'It was him/her that heard us.'

• What about cases where both arguments are 3rd person?
 o by the same relativized probing logic:
 – both arguments will be skipped by \(\pi^0\)

➢ RECALL:

(15) (both args 3sg)

a. ja rı tz’i’ x-∅-etzel-an rı sian
 FOC the dog COM-3sg.abs-hate-AF the cat
 'It was the dog that hated the cat.'

b. ja rı xoq x-∅-tz’et-∅ rı achin
 FOC the woman COM-3sg.abs-see-AF the man
 'It was the woman who saw the man.'
Analysis

- Note that, on this analysis, the overt 1st/2nd person ‘markers’ are not the exponents of valued feats on π^0
 - we never see the latter
- Conceivably, this is an idiosyncratic matter…

[though see Preminger to appear]

- But let us suppose that this is a more general rule:
 (30) **morphological competition in Mayan ABS slot**
 a. the overt exponents of π^0, $#^0$, and any clitics adjoined to them, all compete for a single morphological slot
 b. a clitic will always beat out other competing morphological material

Analysis

There is evidence for rule (30) from elsewhere in Mayan —

- In Tzotzil, a Mayan language not of the K’ichean branch:
 - PERSON agreement morphology can be prefixal or suffixal
 - the general-purpose plural morpheme (-ik) is always a suffix

➢ When person agreement is suffixal—and only then—it preempts the appearance of the plural suffix (Aissen 1987, Woolford 2011)
 - so, e.g., the suffixal version of 2pl bleeds the appearance of -ik

Analysis

- **Given rule (30):** the exponent of $#^0$ can only surface when clitic doubling has not occurred
 - when both arguments are 3rd person (\equiv [Pcpt.]-less)
Analysis

(31) **STEP 2: PROBING FOR [GROUP]**

a. **PL SUBJECT, SG OBJECT**

b. **SG SUBJECT, PL OBJECT**

- Importantly, (31a–b) happen **regardless** of whether the arguments are or aren’t 3rd person (≠ don’t bear [Pcpt.], or do)
 - but we can only see e’- (“pl-”) provided that both arguments are 3rd person

Interim summary

- We have now derived:
 1. **(i)** the so-called “salience hierarchy” effects
 - now an emergent property of:
 - separate probing for PERSON and NUMBER
 - the *featural coarseness of clitic doubling*
 - morphological competition between clitics and functional heads in Mayan
 2. **(ii)** the fact that it is the formal, rather than general-cognitive, properties of an expression that matter for agreement
 3. **(iii)** the fact that the agreement markers that arises for 1st/2nd person look like pronouns (⇐ because they are clitics)
 - while those that arise for 3rd person do not (⇐ because they are the spellout of values on #0)
Interim summary

• Now recall:

(28) **STEP 1: PROBING FOR [PARTICIPANT]**

a. 1ST/2ND PERSON SUBJECT, 3RD PERSON OBJECT

b. 3RD PERSON SUBJECT, 1ST/2ND PERSON OBJECT

➢ in AF, \(\pi^0 \) only ever agrees with one DP

⇒ if we assume that [Participant]-bearers **must** be agreed with (Anagnostopoulou 2003, Béjar & Rezac 2003, a.o.):

at most one of the two DPs can be [Participant]-bearing (≡ 1st/2nd person)

Interim summary

➢ Thus:

(iv) we have derived the **AF Person Restriction**

• All that’s left is to explain why the so-called “hierarchy” effects arise only in AF

 o and nowhere else in the language

• We won’t have time to go into this in any detail; in a nutshell:

 o recall that these \(\pi^0 \) and \#^0 \) probes are basically what we used to call “Infl”

 o Coon, Mateo Pedro & Preminger 2014: in normal K’ichean transitives, the abs argument moves out of the vP phase

 – and into the domain of “Infl”

 o whereas in AF, **there is no verb-phrase-level phase boundary**

 ⇒ both DPs are in the domain of the relevant probes

Interim summary

➢ in other words, abs agreement in K’ichean AF is always ‘omnivorous’ —

 – it’s just that sometimes (namely, in regular transitives), this omnivorousness ranges over a single DP
Overview

- There are various conclusions one can draw from the analysis of φ-agreement in K'ichean AF;
- Here are the ones I want to touch on specifically:

 (i) the status of failed probing

 (ii) the nature of valuation

Failed probing \Rightarrow “crash”?

- One thing we have not discussed in any detail so far:

 - What happens when a probe looking for a feature $[\mathbf{f}]$ scans its c-command domain, and doesn’t find any $[\mathbf{f}]$-bearing XP?

- There’s a robust tradition here that we haven’t really discussed in this course —

 - which assumes that probing is obligatory because probes come into the world in a “toxic” state . . .

 - e.g. bearing uninterpretable features (Chomsky 1995 et seq.)

 . . . and what valuation does is remedy this “toxic” state

 - e.g. deleting/checking uninterpretable features

Failed probing \Rightarrow “crash”?

- there’s a lot behind this, with roots all the way back in the transition from transformations to move α

 - in the wake of Chomsky & Lasnik’s (1977) paper “Filters & Control”

- if you’re interested in the history of these ideas, I have written up a version of it (Preminger 2018)

 - which I’d be glad to give you access to
Failed probing ⇒ “crash”?

• But what I want to focus on here is the empirical question, repeated here —
 ➢ What happens when a probe looking for a feature \([f] \) scans its c-command domain, and doesn’t find any \([f] \)-bearing XP?

• In fact, you already have everything you need to answer this question:

 RECALL:
 ◦ to capture the omnivorous agreement effects in K’ichean AF, we had to assume that the relevant probes —
 (which we called \(\pi^0 \) and \(#^0 \))
 — scan for [Participant] and [Group], respectively
 ◦ but you also saw that AF clauses in which neither argument bears these features are not problematic —

Failed probing ⇒ “crash”?

(32) \(\text{(both args 3sg)} \)

a. ja ri tz’i’ x-∅-etzel-an ri sian
 FOC the dog COM-3sg.ABS-hate-AF the cat
 ‘It was the dog that hated the cat.’

b. ja ri xoq x-∅-t’et-∅ ri achin
 FOC the woman COM-3sg.ABS-see-AF the man
 ‘It was the woman who saw the man.’

• If we relax the assumption that the probes in K’ichean AF are relativized to [Participant] and [Group] —
 ◦ we lose the account of omnivorous agreement

⇒ The probes in (32) have not located any eligible goals.
 ◦ and yet these sentences are perfectly okay…

Failed probing ⇒ “crash”?

⇒ So it cannot be the case that failed probing gives rise to a “crash” or ungrammaticality (contra Chomsky 1995, 2000, et seq.)

• Instead, probing looks much more like a good ol’ Obligatory Transformation —
 ◦ obligatory where possible;
 ◦ and ignored elsewhere.
 (see Preminger 2014, 2018 for a much more extensive discussion)
References
