Person, Number, and the Architecture of Grammar

PART TWO: The geometry of φ-features

Omer Preminger, University of Maryland
LOT 2018, Groningen

Lessons from phonology
 Privative vs. multivalent features ... 3
 Feature geometries ... 5

And now back to φ-features...
 Harley & Ritter (2002) ... 10

PERSON
 Harley & Ritter (2002) ... 13
 McGinnis (2005) ... 17

NUMBER
 Harley & Ritter (2002) ... 25

Markedness, valence, and modularity
 Some properties of these feature structures, and how to evaluate them 29

References
 References ... 36
Lessons from phonology

Privative vs. multivalent features

- Let's start with phonology
 - and not for nothing: the ideas we're about to discuss originated in phonological theory

- OBSERVATION: While there are phonological processes that target only labial segments —
 - (and there are phonological processes that don't care about labiality)
 - there are no phonological processes that apply exclusively to non-labial segments.

 ➢ This is unexpected on a model where there's a feature [±labial]
 - since a rule could specify either [+labial] or [−labial] in its description

Privative vs. multivalent features

⇒ SOLUTION: assume that [labial] is a privative feature —
 - there's no such thing as [+labial] and [−labial];
 - only [labial] or absence thereof (∅)

- If we add the assumption that a rule cannot refer to the absence of a feature —
 - we get the correct typology: rules can either apply only to labials, or not care about labiality at all;
 - but there is no way for them to apply exclusively to non-labials.

Feature geometries

Alas, where one problem dissolves, another reveals itself . . .

- In this case: how can we model place assimilation in this kind of system?
 - assimilation of one labial to another labial is easy to model
 - as spreading of the [labial] feature
 - but what does (generalized) place assimilation amount to, in this system?
 - e.g. en-able vs. em-power (vs. en-close)
 - as it stands, all we would have is a collection of separate, disparate privative place features
 - e.g. [labial], [coronal], [dorsal]
 ⇒ what does it mean, in featural terms, for a [coronal] segment to undergo assimilation and become [labial]?
Feature geometries

⇒ SOLUTION: Features are organized in a hierarchy

- for example, [labial], [coronal], [dorsal] are all child nodes of a parent node named [PLACE]

(1)

- A particular segment will only have **one** child node under [PLACE] (unless there is co-articulation...)
- corresponding to its actual place-of-articulation

Feature geometries

⇒ So, for example, [n] and [p] will be represented as in (2):

(2)

- Now, place-assimilation consists of simply overwriting one segment’s [PLACE] node with another’s (**en-able** → **em-power**)

Feature geometries

- A structure like (1), repeated below, is called a **feature geometry**:

(1)
And now back to φ-features...

Harley & Ritter (2002)

- Okay, after this brief excursion into phonology, let us fast-forward ~15 years
 - and return to our domain of interest, φ-features

- Harley & Ritter (2002), taking their explicit inspiration from the phonological work cited earlier, propose:
 - φ-features are also organized in a feature geometry

- They propose this for the representation of φ-features in the morphology
 - and they motivate their proposal on (mostly) morphological grounds

Harley & Ritter (2002)

- The geometry proposed by Harley & Ritter is given in (3):

(3) Referring Expression (=RE)

 Participant

 Speaker Address

 INDIVIDUATION

 Group

 Minimal

 Augmented Animate Inanimate/Neuter

 CLASS

 Feminine Masculine
Harley & Ritter (2002)

• Let’s start by looking at the PERSON-related side of the geometry:

(4) Referring Expression (=RE)

```
  | Participant
  |   ...
  | Speaker
```

 | Addressee

• This geometry works just like the phonological geometry we saw earlier
 ◦ so, for example, [Participant] is what distinguishes 1st/2nd person expressions (=speech-act participants) from all others
 ⇒ 1st/2nd person expressions have a [Participant] feature; 3rd person ones lack it altogether
 ➢ **crucially**, there is no such thing (on this proposal) as “[–Participant]”

Harley & Ritter (2002)

• Let’s start by looking at the PERSON-related side of the geometry:

(4) Referring Expression (=RE)

```
  | Participant
  |   ...
  | Speaker
```

 | Addressee

➢ What about [Speaker] and [Addressee]?
 ◦ on H&R’s proposal, these are what distinguish 1st and 2nd person expressions from one another
 ⇒ **QUESTION**: given the logic of privativity (cf. [labial] vs. the absence thereof) — why do we need both [Speaker] and [Addressee]?
 – couldn’t we just have **one** subfeature for [Participant], and its presence vs. absence would be the difference between 1st and 2nd person?
Harley & Ritter (2002)

ANSWER:

(5)

<table>
<thead>
<tr>
<th></th>
<th>SINGULAR</th>
<th>DUAL</th>
<th>PLURAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st ex</td>
<td>naika</td>
<td>ntaika</td>
<td>ncaika</td>
</tr>
<tr>
<td>1st in</td>
<td>tχaika</td>
<td>lχaika</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>maika</td>
<td>mtaika</td>
<td>mcaika</td>
</tr>
<tr>
<td>3rd</td>
<td>áχka (f.)</td>
<td>ctάχka</td>
<td>tάska</td>
</tr>
</tbody>
</table>

(Chinook [Pacific NW])

[Boas 1911:626, via Harley & Ritter 2002:493]

➢ we need both [Speaker] and [Addressee] to model 1st person inclusive expressions
 – like tχaika ("1du.INCL") and lχaika ("1pl.INCL")
 ○ this is known as a ‘clusivity’ distinction

McGinnis (2005)

• McGinnis (2005) observes a “bug” in Harley & Ritter’s (2002) geometry
 ○ if [Speaker] and [Addressee] are both universally available features;
 ○ and this is, after all, a theory of morphology;
 ⇒ then there can be a language where the morphology only pays attention to [Addressee]
 – ignoring [Speaker]
 (just like there are languages where the morphology does not pay attention to, say, [ACCUSATIVE])
 ➢ what would such a language look like?
McGinnis (2005)

- Here’s a way to think about it:
 - let’s use (as we have implicitly already been doing) the labels ‘1.EXCL’, ‘1.INCL’, and ‘2’ as descriptive categories
 - carving out particular sets of speech-act participants

⇒ Then English morphologizes these categories as follows:

(7) \['1.EXCL' \quad '1.INCL' \quad '2' \]
we \quad we
\['1.EXCL' \quad '1.INCL' \quad '2' \]

- this can be thought of as a language choosing to morphologize [Speaker] (using the form we)
 - and ignoring [Addressee] — instead using y’all as the ELSEWHERE spellout for [Participant] in the absence of [Speaker]

(9) \['1.EXCL' \quad '1.INCL' \quad '2' \]
ntcaika \quad lχaika \quad mcaika

(Chinook, pl. paradigm)
McGinnis (2005)

➢ But here’s what we never see:

(10) * ‘1.EXCL’ \parallel ‘1.INCL’ \parallel ‘2’

\[\text{shwe} \parallel \text{shy’all}\]

• Crucially, however, Harley & Ritter’s system can generate this language
 ○ as the mirror image of English:
 – \text{shy’all} is the spellout of [Participant] in the context of [Addressee]
 – and \text{shwe} is the ELSEWHERE spellout of [Participant]

(8) ‘1.EXCL’ ‘1.INCL’ ‘2’

\[\text{RE} \ldots \text{Participant} \ldots \text{Speaker} \ldots \text{RE} \ldots \text{Participant} \ldots \text{Addressee} \ldots \text{RE} \ldots \text{Addressee}\]

McGinnis (2005)

⇒ This leads McGinnis to propose that there are certain features in the \(\phi\)-feature

geometry that are initially unavailable

○ and which the learner only activates in the face of positive evidence

• On the PERSON side of the \(\phi\)-geometry:

(11) Referring Expression (=RE)

\[\text{Participant} \ldots \text{Speaker} \ldots \text{(Addressee)}\]

○ the feature [Addressee] is unavailable unless the language exhibits a clusivity

\text{distinction}

McGinnis (2005)

⇒ So a language without a clusivity distinction (e.g. English) would look like this:

(12) ‘1’ ‘2’ ‘3’

\[\text{RE} \ldots \text{Participant} \ldots \text{RE} \ldots \text{Participant} \ldots \text{RE} \ldots \text{Addressee} \ldots \text{Addressee} \ldots \text{Addressee}\]
Harley & Ritter (2002)

- The **NUMBER** side of Harley & Ritter’s geometry looks like this:

(13) Referring Expression (=RE)

```
   ..
   
   INDIVIDUATION
   
   Group  Minimal  CLASS
   
   Augmented  ..
```

NB: The node [CLASS] corresponds to what I have been calling GENDER/NOUN-CLASS and, consequently, falls outside the scope of this course. H&R place this as a dependent of their NUMBER node (=[INDIVIDUATION]) for reasons that have more recently come into question.

Harley & Ritter (2002)

- I won’t spend much time on the finer details of H&R’s analysis of **NUMBER** —
 - in part because work since then has revealed various inadequacies, and made superseding proposals
 - see, in particular, Harbour (2007, *et seq.*)

Harley & Ritter (2002)

- Instead, I will only discuss what an H&R-style representation of a simple, two-number system (‘sg.’ vs. ‘pl.’; without ‘dual’, ‘trial’, or ‘paucal’) would look like:

(14) ‘sg.’ ‘pl.’

```
   RE
   
   ..  INDIV.
   
   GROUP
```

```
   RE
   
   ..  INDIV.
   
   GROUP
```
Some properties of these feature structures, and how to evaluate them

- Feature structures like (14) (and its counterparts in the domain of PERSON, surveyed earlier) embody several claims:

(14) 'sg.' \[\text{RE} \quad \text{INDIV.} \quad \text{RE} \quad \text{INDIV.} \quad \text{Group}\] 'pl.'

(i) each φ-category (PERSON, NUMBER, etc.) consists of privative features
 - rather than bivalent or multivalent ones

(ii) in the domain of NUMBER in particular, 'pl.' (or more accurately, [Group]) is the marked member of two-number oppositions
 - and is thus analogous to [Participant] in the domain of PERSON

➢ These claims would be considered controversial by scholars working on φ-features these days
 - esp. those working in the emerging ‘morphosemantics’ tradition
Some properties of these feature structures, and how to evaluate them

• So, for example:
 ◦ Nevins (2007, 2011) argues that, while NUMBER is indeed composed of privative features, PERSON is composed of bivalent ones
 ◦ Harbour (2011) argues that even NUMBER must be bivalent, as well
 ◦ Sauerland 2003 and related work argues that ‘sg.’, not ‘pl.’, is the marked member of two-number oppositions

• But:
 ◦ Nevins’ arguments are based in morphology;
 ◦ Harbour’s arguments (for the most part) and Sauerland’s arguments (entirely) are based in semantics;

 ➢ Notice something missing…?

Some properties of these feature structures, and how to evaluate them

➢ In the remainder of the course, I plan to defend the following position:
 ◦ the feature structures just given for PERSON and NUMBER are the correct ones for syntax;
 ◦ the assumption that morphology and semantics use the same representations as syntax—for any given domain (e.g. φ-features)—is fine as a methodological heuristic;
 – but as a substantive hypothesis, it is somewhere between suspect and preposterous.

Some properties of these feature structures, and how to evaluate them

 ◦ that said, since the system in its entirety (morphology + syntax + semantics + whatever else) has to be acquirable —
 – the contours of the syntactic representation will often “shine through” to the morphology and the semantics
 · see also Zeijlstra (2014)
 ◦ hence, e.g., Harley & Ritter’s (2002) morphologically-based investigation —
 · because it was typological in nature
 — ended up reflecting the properties of the (underlying & invariant) syntactic representations.
Some properties of these feature structures, and how to evaluate them

- Finally, it could still be the case —
 (even if we are correct, and the features structures surveyed here are the right ones for syntax)
 — that these feature structures are in turn derivable from some deeper, more fundamental set of primitives (cf. Harbour 2016).

- In that sense, what is being presented here can be viewed as an ‘effective theory’ of the syntax of φ-features:
 ○ as the term is used in, e.g., physics
References

svn revision code: 9672