Nested Interrogatives and the Locus of *wh*

OMER PREMINGER

MIT, May 2009

Abstract

This paper discusses the behavior of certain wh-island-violating (but felicitous) constructions in Hebrew. These constructions exhibit two characteristics that are of interest: superiority effects, and a sensitivity to the distinction between short vs. long wh-movement.

I propose an analysis based on the assumption that in Hebrew, the relevant wh-feature resides on a head lower than \(C^0\), but CP is still equipped with a single specifier position that can be utilized for the purpose of successive-cyclic wh-movement. The proposal is shown to account for the behavior of these constructions with respect to the aforementioned characteristics, and is supported by the existence of independent cases of \(\overline{A}\)-movement to a position below the overt complementizer in Hebrew.

1. Introduction

In this paper, I discuss the properties of a particular construction in Hebrew, in which several interrogative clauses are nested within one another. This gives rise to multiple wh-movement—but unlike familiar cases (e.g., Bulgarian; Rudin 1988), no single clausal periphery ends up overtly hosting more than one wh-element.

The construction in question is shown to exhibit two interesting characteristics. The first is a robust superiority pattern, with respect to the base-generated positions of the moved wh-elements. The second is, quite surprisingly, the existence of wh-island effects. Though the very existence of these constructions might suggest that the *wh-Island Condition* (Ross 1967)—or any more contemporary successor to it—is inoperative in Hebrew, this is shown not to be the case. Rather, a more intricate distinction, involving short wh-movement vs. long wh-movement, is shown to regulate the distribution of wh-island effects.

I then present an analysis of these phenomena, based on the assumption that in Hebrew, the relevant wh-feature is located in a projection lower than CP. This assumption is independently motivated by the existence of another type of \(\overline{A}\)-movement in Hebrew that targets a position below the overt complementizer. Crucially, even though the overt landing site of wh-movement is below \(C^0\), CP itself still provides a single specifier position through which successive-cyclic wh-movement may occur.

This analysis is shown to predict both the superiority and the wh-islandhood phenomena exhibited by this construction.

*Thanks to Irena Botwinik, Danny Fox, Ivona Kucerova, Idan Landau, Shigeru Miyagawa, David Pesetsky, Ivy Sichel, an anonymous reviewer, and audiences at *Edges in Syntax* (especially Luigi Rizzi), the 22nd *Conference of the Israeli Association for Theoretical Linguistics* (IATL 22), and *MIT Ling-Lunch*; and to the anonymous reviewers. Also, thanks to Tal Siloni and Julia Horvath, who got me interested in this phenomenon in the first place. All errors are my own.
2. Prologue: Multiple wh-Movement in Hebrew

Hebrew performs its wh-movement overtly. If one takes care to exclude *Echo-Question* readings, interogatives with only one wh-element become ungrammatical unless the wh-element has moved:

(1) a. [et mi]Dan pagaš t₁?
 ACC who Dan met
 ‘Who did Dan meet?’

 b. *Dan pagaš et mi?
 Dan met ACC who

In addition, there is a seemingly independent limitation prohibiting the appearance of more than one wh-element at a given clausal periphery, as shown in (2a–b). This is not a ban on two wh-elements being base-generated in the same clause; *Pair-List* questions such as (3a), in which one of the internal arguments of *natan ’gave’* undergoes wh-movement and the other remains in situ, are felicitous. Nor is this a ban on movement of more than one wh-element base-generated in a given clause. As shown in (3b), two internal arguments of *natan ’gave’* can both undergo wh-movement, provided they do not land at the same clausal periphery.¹

(2) a. *[ma] Dan natan t₁ t₂?
 what DAT-who Dan gave

 b. *[le-mi] Dan natan t₁ t₂?
 DAT-who what Dan gave

(3) a. *[ma] Dan natan t₁ le-mi?
 what Dan gave DAT-who
 ‘What did Dan give to whom?’

 b. *[ma] Dina šaxexa [le-mi] Dan natan t₁ t₂?
 what Dina forgot DAT-who Dan gave
 ‘[What] did Dina forget [to whom] Dan gave t₂ t₁?’

Indeed, (3a) and (3b) represent the two types of multiple-wh-questions one finds in Hebrew. The first type, which also exists in English, is *Pair-List* questions—or more accurately, *Tuple-List* questions (where a pair is just a specific instantiation of an *n*-tuple, with a size of *n*=2). Like their English counterparts, the answer to these is a list—or under certain circumstances, a singleton—of pairs/tuples, with each element in a given pair/tuple corresponding to one wh-element in the original question. The sentence in (3a) above is one such case, and further examples are given below:²

(4) a. [mi] t₁ axal ma?
 who ate what
 ‘Who ate what?’

¹ As will be shown in section 3, this is by no means a sufficient condition for the grammaticality of a Hebrew question involving multiple wh-elements.

² As the felicity of (5a, 5d) indicates, Hebrew does not manifest an English-like *That-Trace Effect*.
b. [mi]₁ t₁ amar [CP še-mi ne’elam]?
 who said that-who disappeared
 ‘Who said that who disappeared?’

c. [mi]₁ t₁ amar [CP še-Dan tilfen le-mi]?
 who said that-Dan phoned DAT-who
 ‘Who said that Dan phoned whom?’

d. [mi]₁ t₁ šalax ma le-mi?
 who sent what DAT-who
 ‘Who sent what to whom?’

(5) a. [mi]₁ Yosi xašav [CP še-(t₁-)axal ma]?
 who Yosi thought that-ate what
 ‘Who did Yosi think ate what?’

b. [mi]₁ Yosi xašav [CP še-(t₁-)amar [CP še-mi ne’elam]]?
 who Yosi thought that-said that-who disappeared
 ‘Who did Yosi think said that who disappeared?’

c. [mi]₁ Yosi xašav [CP še-(t₁-)amar [CP še-Dan tilfen le-mi]]?
 who Yosi thought that-said that-Dan phoned DAT-who
 ‘Who did Yosi think said that Dan phoned whom?’

d. [mi]₁ Yosi xašav [CP še-(t₁-)šalax ma le-mi]?
 who Yosi thought that-sent what DAT-who
 ‘Who did Yosi think sent what to whom?’

The second type of multiple-wh questions, shown in (3b) above, is what I will call Nested Interrogatives. These sentences involve multiple interrogative clauses nested within one another, with one wh-element moving to the periphery of each of the interrogative clauses. Consider the following example:

(6) Yosi yada [CP [et ma]₂ Dan šaxax [CP [le-mi]₁ Rina natna t₁ t₂]].
 Yosi knew ACC what Dan forgot DAT-who Rina gave
 ‘Yosi knew [what]₂ Dan forgot [to whom]₁ Rina gave t₂ t₁.’

The meaning of Nested Interrogatives is decidedly different from that of Pair/Tuple-List questions. In (6), what Yosi knows is something about individuals, not about pairs. A rough schematization of the meaning of (6) is given below:

(7) Yosi knew the extension of [x] Dan forgot what the extension of [y| Rina gave x to y] was

If the structure that is embedded in (6) appears as a matrix question, the conversationally appropriate answer would be one about individuals, not about pairs:

(8) A: [et ma]₂ Dan šaxax [CP [le-mi]₁ Rina natna t₁ t₂]?
 ACC what Dan forgot DAT-who Rina gave
 ‘[What]₂ did Dan forget [to whom]₁ Rina gave t₂ t₁?’

B: [et ha-sefer ha-xadaš] / #[et ha-sefer ha-xadaš, le-Roni]
 ACC the-book the-new ACC the-book the-new DAT-Roni
In this paper, I will be primarily concerned with Nested Interrogatives in Hebrew, the phenomena they manifest, and the analysis of these phenomena.

3. Nested Interrogative Phenomena

3.1. Superiority Effects

The first phenomenon exhibited by Nested Interrogatives in Hebrew that I will discuss is a robust superiority pattern. Consider the following contrast:

(9) a. [et ma]₂ Dan šaxax [CP [mi]₁ t₁ axal t₂]?
 ACC what Dan forgot who ate
 ‘[What]₁ did Dan forget [who]₁ t₁ ate t₂?’

 b. * [mi]₁ Dan šaxax [CP [et ma]₂ t₁ axal t₂]?
 who Dan forgot ACC what ate

Notice that (9a) is not simply a case of *mi ‘who’ remaining in situ. First, as noted in section 2, wh-elements in Hebrew can only remain in situ in Echo-Question and Pair/Tuple-List readings, and (9a) is not such a case. Second, the same superiority effects can be replicated in cases that do not involve wh-subjects at all:

(10) a. [et ma]₂ Dan šaxax [CP [le-mi]₁ siparti t₁ [CP še-(t₂-)niceax ba-taxarut]]?
 ACC what Dan forgot DAT-who told.1SG that-won in the contest
 ‘[Who]₁ did Dan forget [to whom]₁ I told t₁ [t₂ won the contest]?’

Further examples are given below:

(11) a. [le-mi]₁ Dan šaxax [CP [et ma]₂ siparti t₁ [CP še-(t₂-)niceax ba-taxarut]]?
 DAT-who Dan forgot ACC what told.1SG that-won in the contest
 ‘[Who]₁ did Dan forget [to whom]₁ I told t₁ [t₂ won the contest]?’

3In many respects, the data discussed here goes back to Reinhart’s (1981) paper, which is itself a response to Rizzi (1978). Indeed, the analysis proposed in section 5 is in many ways inspired by Reinhart’s analysis, though the latter was formulated in a decidedly different framework (namely, early Government and Binding theory). The reader may therefore find it surprising that this paper uses very few data points from Reinhart’s (1981) paper. The reasons for this are twofold:

First, Reinhart’s paper conflated three types of A-movement in Hebrew: interrogative wh-movement, topicalization, and relativization with an overt pronoun. Topicalization in Hebrew has distinctly different properties than interrogative wh-movement does (e.g., a much reduced sensitivity to islands). The (optional) overt pronoun found in Hebrew relativization structures is arguably very different from the overt wh-pronoun found in English relative clauses, and is perhaps no more than a topicalized resumptive pronoun (as its morphological form would suggest). Therefore, the data used in this paper—unless otherwise stated—is carefully restricted to interrogative wh-movement.

Second, the current analysis places a great deal of importance on the distinction between long and short wh-movement, and the examples are carefully chosen to control for this distinction. While these differences were noticed by Reinhart, they were considered “dialectal”, and very few minimal pairs were constructed around this property of the derivation.
b. * [le-mi]_1 Dan šaxax [CP [mi]_2 siparti t_1 [CP še-(t_2-)niceax ba-taxarut]]? DAT-who Dan forgot who told.1SG that-won in.the-contest

\[
\begin{align*}
\text{(12) a.} & \quad [et \quad ma]_2 \text{ Dan šaxax } [CP [mi]_1 t_1 \text{ xašav } [CP še-Roni axal t_2]]? \\
& \text{ACC what Dan forgot who thought that-Roni ate} \\
& \text{‘[What]_2 did Dan forget [who]_1 t_1 thought that Roni ate t_2?’} \\
\text{b. * [mi]_1 Dan šaxax } [CP [et \quad ma]_2 t_1 \text{ xašav } [CP še-Roni axal t_2]]? \\
& \text{who Dan forgot ACC what thought that-Roni ate}
\end{align*}
\]

The emergent pattern—already observed by Reinhart (1981)—is that for the most part, Nested Interrogatives in Hebrew seem to observe a “non-intersection” constraint. Informally, multiple wh-movements must be nested, rather than crossing.\(^4\) Similar patterns have been observed for other languages that allow Nested Interrogatives (e.g., French, Italian, and some varieties of English), and were originally handled by positing a general principle of the language faculty against crossing dependencies (see Fodor 1978, Kayne 1984, Pesetsky 1982, among others).

In section 5, I will show that at least for Hebrew, there is no need to postulate any such principle. Rather, the emergent pattern follows naturally from independently motivated conditions on the economy of movement.

There is an interesting observation to be made here regarding the interaction of syntactic superiority and semantic interpretation. Typical superiority effects, of the kind found in Pair/Tuple-List questions, do not affect interpretation; in those cases, there is a single putative meaning (a “target LF”, so to speak), as in (13), and superiority simply determines which syntactic structure will be used to express this meaning:

\[
\begin{align*}
\text{(13) } & \quad \{\langle x, y \rangle | \text{ Dan thinks that } x \text{ ate } y \} \\
\text{(14) a.} & \quad [\text{Who}]_1 \text{ does Dan think } [CP t_1 \text{ ate what}]? \\
\text{b. * [What]_1 } (\text{does}) \text{ Dan think } [CP \text{ who ate } t_1]?
\end{align*}
\]

\(^4\)In fact, it seems likely that Nested Interrogatives in Hebrew obey this constraint invariably, and that apparent deviations from this pattern, which were noted by Reinhart (1981), can be attributed to the freedom of merging order among internal arguments of Hebrew ditransitives—a fact that was not yet discussed at the time. Since then, it has been occasionally noted in the literature that the internal arguments of ditransitive verbs in Hebrew behave as though they were equidistant to the clausal periphery. Consider the following paradigm, involving multiple-wh questions in a Pair-List configuration:

\[
\begin{align*}
\text{(i) a.} & \quad [et \quad ma]_1 \text{ Dan xašav šе-hexzarta } t_1 [le-mi]? \\
& \text{ACC what Dan thought that-returned.2SG DAT-who} \\
& \text{‘What did Dan think that you returned to whom?’} \\
\text{b. [le-mi]_1 Dan xašav šе-hexzarta } t_1 [et \quad ma]? \\
& \text{DAT-who Dan thought that-returned.2SG ACC what} \\
& \text{‘To whom did Dan think that you returned what?’} \\
& \text{(from Preminger 2006:(183a-b), p. 73)}
\end{align*}
\]

The grammaticality of both (i.a) and (i.b) is significant, since Hebrew normally exhibits the same kind of superiority effects in Pair-List questions as English does (e.g., when subjects vs. internal arguments are involved).

Similar observations appear in Landau (1994), among others.
(15) a. $[\text{mi}]_1$ Dan xošev $[\text{CP še-} (t1-) \text{axal ma}]$?
 who Dan thinks that-ate what
 ‘[Who]$_1$ does Dan think t_1 ate what?’

 b. *$[\text{ma}]_1$ Dan xošev $[\text{CP še-mi } \text{axal } t_1]$?
 what Dan thinks that-who ate

In other words, the putative meaning of (14b) is the same as the meaning of (14a)—namely, (13); superiority effects simply determine that the meaning in (13) will be expressed in English as (14a), rather than (14b). The same holds for (15a) vs. (15b) in Hebrew.

Superiority effects in Nested Interrogatives are quite different, in this respect. The meaning that the ungrammatical (9b) would have if it were grammatical is different from the meaning of the grammatical (9a):\(^5\)

(16) a. \textit{meaning}(9a) =
 \{x \mid \text{Dan forgot what the extension of } \{y \mid y \text{ ate } x\} \text{ was}\}

 b. \textit{putative-meaning}(9b) =
 \{y \mid \text{Dan forgot what the extension of } \{x \mid y \text{ ate } x\} \text{ was}\}

The relation between (10a) and (10b) is similar:

(17) a. \textit{meaning}(10a) =
 \{x \mid \text{Dan forgot what the extension of } \{y \mid \text{I told } y \text{ that Rina ate } x\} \text{ was}\}

 b. \textit{putative-meaning}(10b) =
 \{y \mid \text{Dan forgot what the extension of } \{x \mid \text{I told } y \text{ that Rina ate } x\} \text{ was}\}

Thus, syntactic superiority actually limits the set of meanings that can be expressed using the Nested Interrogative construction in Hebrew—the meanings in (16b) and (17b) simply cannot be expressed using this construction. In itself, this is not a particularly shocking observation; there are languages (e.g., prescriptive English) that bar this construction completely, so some paraphrase must obviously be available. Nevertheless, this property is noteworthy, since it means that in contrast to superiority effects in multiple-wh questions

\(^5\)A reviewer wonders about the methodological soundness of surmising the putative meaning of a sentence that is, in fact, ungrammatical in the language under consideration. This is a valid point, but the fact remains that the meanings of the grammatical pair-members (namely, (9a, 10a)) contain an asymmetry—between x, which is quantified over as part of the matrix question, and y, which is quantified over as part of the embedded question—which would be hard to account for if it were not the result of the corresponding asymmetry in syntax—namely, the asymmetry between the wh-element that has undergone long wh-movement and the one that has undergone short wh-movement. It is therefore not unreasonable to conjecture that if the syntactic computation would allow the syntactic asymmetry to be reversed (contra to fact), the relevant asymmetry in meaning would be reversed, as well.

Moreover, regardless of whether this reasoning is correct, it remains true that the meanings in (16b, 17b) simply cannot be expressed in Hebrew by means of the Nested Interrogative construction—a fact that demands explanation under any theory.
in English, superiority effects in Nested Interrogatives in Hebrew actually restrict the set of possible interpretations that the construction may have.\[^6\]

3.2. The Distribution of wh-Islandhood

As the very existence of Nested Interrogatives demonstrates, the conventional wh-Island Condition (Ross 1967) does not hold of Hebrew. This does not mean, however, that no wh-island effects exist. Compare the felicitous (18a–c) to the infelicitous (19a–c):

\[(18) \begin{align*}
\text{a. } & \text{[eyze sefer]_2 šaxaxta } \quad \text{[CP [le-mi]_1 Dan šalax t_1 t_2]}? \\
& \text{which book forgot.2SG DAT-who Dan sent} \\
& \quad '[Which book]_2 did you forget [to whom]_1 Dan sent t_2 t_1?' \\
\text{b. } & \text{? [et ma]_2 Rina xašva } \quad \text{[CP še-Dan ša'al [CP [le-mi]_1 Roni šalax t_1 t_2]]?} \\
& \text{ACC what Rina thought that-Dan asked DAT-who Roni sent} \\
& \quad '[What]_2 does Rina think that Dan asked [to whom]_1 Roni sent t_2 t_1?'
\end{align*}\]

\[(19) \begin{align*}
\text{a. } & \text{* [eyze sefer]_2 šaxaxta } \quad \text{[CP [le-mi]_1 Rina xašva [CP še-Dan šalax t_1 t_2]]?} \\
& \text{which book forgot.2SG DAT-who Rina thought that-Dan sent} \\
& \quad '[Which book]_2 did you forget [to whom]_1 Rina thinks that Dan sent t_2 t_1?'
\end{align*}\]

Notice that in terms of the relative nesting of filler-gap dependencies, (19a–c) mirror the relations in (18a–c). Similarly, (19a–c) represent the same superiority configurations as their felicitous counterparts in (18a–c). Therefore, neither of these properties (the nesting of filler-gap dependencies, or superiority effects) can explain the contrast in grammaticality between the two sets.

The difference that underlies the attested contrast seems to be one of short wh-movement (movement of a constituent to the periphery of the clause where it was base-generated) vs.

\[^6\]A reviewer points out an argument by Fanselow (2004), that configurations that violate the Minimal Link Condition (MLC) can be ruled in, just in case they lead to interpretations that would otherwise be unavailable—even in Hebrew:

\[
\begin{align*}
\text{(i) } & \text{[et ma]_2 kana_1 mi } t_1 t_2? \\
& \text{ACC what bought who} \\
& \quad '[Who]_\text{TOPC bought what?'} \\
\end{align*}
\]

However, as Fanselow notes, this amnesty from the MLC does not extend to what he calls “nestedness effects” (Fanselow 2004:87). He takes this to indicate that superiority effects in nesting constructions should be derived from something other than the MLC; regardless of the precise account, however, the relevant observation is that the data supporting this meaning-based amnesty from the MLC comes from an empirical domain that is disjoint from the one under consideration here.
long wh-movement (movement of a constituent to the periphery of a clause outside of the one where it was base-generated).

In all of the infelicitous cases (19a–c), there is at least one clausal periphery through which more than one wh-element has passed, such that each of the relevant wh-elements has undergone long wh-movement. In the felicitous cases (18a–c), for every given clausal periphery, at most one wh-element has moved long-distance through that periphery.

Another, perhaps simpler way to describe these facts is as follows: short wh-movement does not “clog” the left periphery of the clause in Hebrew, while long wh-movement does. This means that once a wh-element has moved out of a given clause, the sole escape hatch of that clause is no longer available for movement of other wh-elements.

4. Background: Α-Movement Below C₀ in Hebrew

Hebrew has an extremely productive (and pragmatically, not very marked) operation of topicalization, which targets a position below the overt complementizer. This phenomenon, which I will refer to as Sub-Complementizer Topicalization (henceforth, SCT), is exemplified below:

(20) Dan amar [CP še-[et ha-sefer limud]₁ hu kvar kara t₁].
 Dan said that-ACC the-book teaching he already read
 ‘Dan said that he had already read THE TEXTBOOK.’

To establish that SCT is indeed an instance of Α-movement, let us consider some relevant diagnostics. First, SCT behaves as Α-movement with respect to the licensing of P(arasitic)G(ap)s—namely, it is able to license them:

(21) Dan amar [CP še-[et ha-sefer ha-ze]₁ hu kara t₁ (mi-)bli liknot e].
 Dan said that-ACC the-book the-this he read from-without buy.INF PG
 ‘Dan said that he had read THIS BOOK, without buying it.’

Compare this with a clear-cut case of A-movement, of the kind involving the raising predicate amur (‘supposed to’; lit. ‘said.PASV’), which predictably fails to license PGs:

(22) a. Dan amar [CP še-[ha-sefer ha-ze]₁ amur t₁ le’orer maxloket].
 Dan said that-the-book the-this supposed wake.INF controversy
 ‘Dan said that this book is supposed to cause controversy.’

7The use of the term “topicalization” here is somewhat misleading. Topicalization and focalization in Hebrew result in the same word orders, exhibit the same syntactic properties, and are mutually exclusive in the same clause—suggesting that the syntactic mechanism referred to here as SCT may underlie either of the two discourse functions.

8As pointed out by a reviewer, there could be other explanations for the ungrammaticality of (22b), including the absence of an AGENT thematic role in the clause where the without-PP is attached; in addition, it has been claimed that A-movement can, under certain conditions, license parasitic gaps (Neeleman 1994). These concerns might serve to weaken the relevance of this specific contrast ((21) vs. (22b)), but do not affect the validity of the binding diagnostic, discussed immediately below.
In addition, the landing site of SCT fails to act as an A-binder. Note, for example, the lack of Condition C effects in (23b), below, with respect to the pronoun acma (‘herself’) and the R-expression Rina:

(23) a. Dan amar [CP še-Rina\textsubscript{i} ohevet et acma\textsubscript{i}].
 Dan said that-Rina likes ACC herself
 ‘Dan said that Rina\textsubscript{i} likes herself.’

b. Dan amar [CP še-[et acma\textsubscript{i}]]\textsubscript{1} Rina\textsubscript{i} ohevet t\textsubscript{1}].
 Dan said that-ACC herself Rina\textsubscript{i} likes
 ‘Dan said that Rina\textsubscript{i} likes HERSELF\textsubscript{1}.’

Compare this with a prototypical case of A-movement—namely (24b), which is the verbal passive counterpart of (24a):

(24) a. ? Dan amar [CP še-ha-mištara acra ota\textsubscript{i} [axrey še-Rina\textsubscript{i} xazra]].
 Dan said that-the-police arrested ACC.her after that-Rina returned
 ‘Dan said that the police arrested her\textsubscript{i} after Rina\textsubscript{i} came back.’

b. * Dan amar [CP še-[ha-mištara acra ota\textsubscript{i}]].
 Dan said that-the-police arrested ACC.her after that-Rina returned
 ‘Dan said that Rina\textsubscript{i} likes HERSELF\textsubscript{1}.’

Once again, SCT fails to pattern with A-movement, patterning instead with A\text{-}movement.

Borer (1995) claims that SCT in Hebrew is in fact a case of scrambling, manifesting a combination of the properties of A-movement and the properties of A\text{-}movement. The central piece of evidence for non-A behavior is the lack of W(eak)C(ross)O(ver) effects in SCT constructions, as shown below:

(25) a. Dan yode’a [CP še-kol yeled\textsubscript{i} ohev et ima šelo\textsubscript{i}].
 Dan knows that-every boy\textsubscript{i} loves ACC mother his
 ‘Dan knows that every boy\textsubscript{i} loves his\textsubscript{i} mother.’

b. Dan yode’a [CP še-[et ima šelo\textsubscript{i}]].
 Dan knows that-ACC mother his every boy\textsubscript{i} loves
 ‘Dan knows that every boy\textsubscript{i} loves HIS\textsubscript{i} MOTHER.’

However, as argued by Lasnik & Stowell (1991), WCO effects are far from being a perfect diagnostic for A\text{-}movement. Specifically, they do not arise when non-quantificational variable

\footnote{Note that accusative-marked noun-phrases—such as et acma (‘ACC herself’) in (23b)—do give rise to Condition C violations under normal circumstances:}

(i) šixnati ot-a\textsubscript{i/}\textsubscript{3} še-Rina\textsubscript{i} tenaceax.
 convinced.1SG ACC-3SG.FEM that-Rina win.FUT
 ‘I convinced her\textsubscript{i/}\textsubscript{3} that Rina\textsubscript{i} will win.’
binding is involved; appositive relativization is such a case—and as shown in (26b), WCO effects fail to appear in appositive relative clauses in Hebrew as well:

(26) a. John will speak to this girl, who her mother truly loves.

 b. Dina will speak to this boy, who his mother truly loves.

It seems quite plausible that if appositive relative clauses are *non-quantificational* by nature (as opposed to wh-questions, for example)—and this obviates the potential WCO violation in (26a–b)—then SCT is non-quantificational in precisely the same way. Broadly speaking, the information-structural import of SCT bears similarity to that of an appositive relative clause: removing an appositive relative clause has no effect on the truth-conditions of a sentence, and undoing SCT in a sentence where it has applied seems to have no truth-conditional effects, either.

In light of the existence of such confounding factors, the lack of WCO effects in SCT can hardly be taken as straightforward evidence for a lack of A-properties. Moreover, Borer (1995) fails to note the failure of the landing site of SCT to A-bind (as shown in (23b), above). The latter bolsters the idea that WCO effects fail to appear not because the landing site of SCT displays A-position properties, but rather due to some other property of the construction (such as the specific non-quantificational nature of the operator-variable relations created by SCT, as suggested above).

5. An Analysis of Hebrew Nested Interrogatives

In this section, I present the proposed analysis of Nested Interrogatives in Hebrew, and demonstrate how it derives the phenomena discussed in section 3.

5.1. The Proposal

5.1.1. Projections

In light of the SCT facts discussed in section 4, it is reasonable to assume that Hebrew has an A-operator position below its overt complementizer. In section 3.2, it was demonstrated that *short wh-movement* (movement of a wh-element to the periphery of the clause where it was base-generated) does not “clog” the left periphery—i.e., subsequent movement of another wh-element out of the same clause is possible.

Taken together, these facts suggest that much like SCT, wh-movement in Hebrew targets a position below the complementizer. Thus, the properties embodied by the CP layer in English are not shared by a single projection in Hebrew—but rather distributed between at least two projections:

(27) a. **HIGHER PROJECTION:**

 i. serves as the clausal escape-hatch

 ii. hosts the overt complementizer (presumably, as its head)
b. LOWER PROJECTION:
 i. is the complement of the head of the higher projection (in (27a))
 ii. is the locus for $\bar{\Lambda}$-operator interpretation

5.1.2. Labels

At this point, a choice must be made: which of the aforementioned projections should be labeled “CP”? This is partially a matter of aesthetic preference (since neither is completely equivalent to the English CP), but not exclusively so. For example, if we had evidence that these two projections could be filled independently and simultaneously to TP being filled, then (27b) could not be TP. If one had, in addition, independent reasons to assume no additional projections exist between CP and TP, it would follow that (27b) is CP, and (27a) is something else. However, it is not clear that evidence of this kind exists.

Borer (1995) argues that \([\text{Spec,TP}]\) is the target position for SCT in Hebrew. In that case, one may be tempted to identify (27b) as TP, and (27a) as CP. However, her argument relies heavily on WCO data, and disregards the failure of the landing site of SCT to $\bar{\Lambda}$-bind (see section 4 for a detailed discussion).

I am aware of no clear-cut empirical reason to prefer either (27a) or (27b) as the projection labeled “CP”; I will choose (27a) as “CP”. This keeps the following properties of CP cross-linguistically constant: being the highest clausal projection, hosting the overt complementizer, and providing the clausal escape hatch for wh-movement—leaving only the target position of wh-movement to vary cross-linguistically.

This choice finds independent support in the analyses of wh-movement and related phenomena in other languages. In Hungarian, it has been argued that wh-movement, though overt, does not target \([\text{Spec,CP}]\); rather, it targets the specifier of a lower peripheral projection, which we could call FocP (see Brody 1995, Kiss 1987). This analysis of Hungarian supports the idea that even among languages that perform their wh-movement overtly, the target position of such movement may vary.

Furthermore, van Craenenbroeck & Lipták (2006) show that Hungarian supports a kind of sluicing they call Relative Deletion (henceforth, RD). In RD, a TP internal to the relative clause is deleted. Crucially, RD leaves behind not only the nominal “head” of the relative clause, but also a clause-internal focused element:

(28) János meghívott valakit és azt hiszem, hogy Bélát. (Hungarian)

János PV.invited someone.ACC and that.ACC think that Bélá.ACC

‘János invited someone, and I think it was Bélá whom he invited.’

I will not go into the details of van Craenenbroeck & Lipták’s analysis here, but the relevant generalization can be stated as follows: in a given language, if wh-movement targets \([\text{Spec,XP}]\), sluicing will invariably elide the complement of X^0. The analysis therefore hinges on the fact that Hungarian wh-movement targets the same position as focalization does—namely, \([\text{Spec,FocP}]\). As van Craenenbroeck & Lipták show, RD is allowed in exactly those languages where wh-movement can land in a position inside the clause (such as \([\text{Spec,FocP}]\): of the languages in their sample, it is allowed in Hungarian, Polish, and Russian (which have a clause-internal landing-site for wh-movement), and disallowed in English, Dutch, and German (which do not have a clause-internal landing-site for wh-movement).
Interestingly, Hebrew also allows RD:

(29) Dan hizmin mišehu la-mesiba, nidme li še-et Dina.
Dan invited someone DAT.the-party seems DAT.1SG that-ACC Dina
‘Dan invited someone to the party, and I think it was Dina.’
(lit. ‘..., and I think that Dina.’)

The felicity of (29) is predictable if the overt landing-site for Hebrew wh-movement—like its Hungarian counterpart—is a position inside the clause (such as the position targeted by SCT).

I will therefore adopt the following naming conventions, with respect to the projections outlined in (27a–b):

(30) a. **HIGHER PROJECTION; CP**
 i. serves as the clausal escape-hatch
 ii. hosts the overt complementizer (presumably, as its head)

b. **LOWER PROJECTION; FocP**
 i. is the complement of the head of the higher projection (in (27a/30a))
 ii. is the locus for Ā-operator interpretation

It may be that in Hebrew, FocP is none other than TP (the position taken by Borer 1995), in which case (30b) is a notational equivocation—but I do not think the case has been made for such a unification (see section 4). I leave this open for further research.

5.2. Empirical Coverage

Let us examine how the proposal in section 5.1 fares in accounting for the phenomena exhibited by Nested Interrogatives, as presented in section 3.

At this point, it is worthwhile to make explicit some fundamental (and hopefully uncontroversial) assumptions. First, allowing C₀ to have multiple specifiers would obviate any wh-island effects, because there would always be an additional vacant edge position to be utilized at the CP phase. As shown in section 3.2, Hebrew does manifest at least some wh-island effects—therefore, Hebrew C₀ cannot be allowed to have multiple specifiers.

Second, wh-island effects are often attributed to the P(hase)I(mpenetrability)C(ondition) (Chomsky 2000, 2001), the modern successor to Subjacency (Chomsky 1986) and/or the explicit wh-Island Condition (Ross 1967). I will remain neutral here as to whether the PIC is actually a grammatical primitive, or rather derivable from other principles of the grammar. In what follows, I will merely assume that the PIC is a valid generalization.

5.2.1. A Featurally Explicit Account of Successive Cyclic wh-Movement

Given the proposal in section 5.1, Foc⁰ in Hebrew interrogative clauses is equipped with a [wh] feature, which attracts a wh-element. For concreteness, let us assume a clause with exactly two wh-elements, wh₁ and wh₂; and for the purposes of this subsection alone, let us disregard their relative hierarchy. Foc⁰ will attract one of these wh-elements:

10 See Richards (2007b) for a particularly intriguing proposal, deriving not only the PIC, but also the identity of the phase heads and their properties, from considerations having to do with the selection of lexical sub-arrays.
What will be the fate of \(wh_2\)? Since there are no remaining active \([wh]\) features in the current clause, the situation faced by \(wh_2\) is comparable to the situation faced by a wh-element located inside an English declarative clause. Consider the embedded clause in (32), below:

(32) Who do you think (that) Dan met?

This exceedingly simple example represents a long-standing problem with respect to the Probe-Goal theory of movement. We know that who makes it out of the embedded clause in (32). Locality (e.g., the PIC) tells us that this cannot happen in one fell swoop; rather, it happens successive-cyclically, through the intermediate \([\text{Spec},\text{CP}]\). However, none of this explains what drives this movement: why does who vacate its position within the embedded clause in the first place?

Claiming that who moves to the edge of the embedded CP in (32) so it can later check a feature on the matrix \(C^0\) violates basic notions of cyclicity and/or phasehood—since, at this point in the derivation, the matrix \(C^0\) and its associated features are not yet present in the derivation.

Positing a syntactically active feature on the embedded \(C^0\), on the other hand, runs into an immediate problem—namely, how this feature does not crash the derivation in simple declaratives, where there is no wh-element that passes through \(C^0\):

(33) I think (that) Dan met Dina.

Claiming that wh-feature-equipped declarative \(C^0\) is selected for the numeration in precisely those environments where it is needed (e.g., in (32) but not in (33)) simply relegates the aforementioned cyclicity/phasehood property from the derivation to the numeration, but the problem remains.

Several more interesting approaches have been taken to this problem. While it is beyond the scope of this paper to seriously evaluate and compare these proposals (see Preminger 2007, 2008 for some discussion), I will mention two of them here. First, one may seek to refine the two-way division of syntactic features. In Chomsky’s (1995) system, features come in one of two flavors: they can be syntactically active, in which case they are unvalued, and will crash the derivation if they arrive at the interfaces unchecked; alternatively, they can be syntactically inactive, in which case they are valued, and are amenable to interpretation at the interfaces. Pesetsky & Torrego (2007) argue that the bi-conditional implicated in this description should be severed. In particular, they argue for the existence of syntactically active features that are not uninterpretable. With respect to the case at hand, suppose that elements that undergo \(\overline{\Lambda}\)-movement—in Hebrew, this would encompass wh-elements, foci, and topics—all bear an uninterpretable but valued operator-feature, whose value depends on the nature of the moving
element: \([uOp_{\text{wh}}], [uOp_{\text{foc}}], \text{ or } [uOp_{\text{top}}]\), respectively. Suppose further that declarative \(C^0\) bears an interpretable but unvalued operator-feature: \([iOp_\phi]\). This \([iOp_\phi]\) feature will attract a wh-element—if present, as in (32)—to \([\text{Spec,CP}]\), though it will not render \([uOp_{\text{wh}}]\) interpretable, due to the absence of a value on the probe.\(^{11}\) Crucially, however, \([iOp_\phi]\) will not crash the derivation of a clause without a wh-element, as in (33).

Alternatively (and these alternatives are not, in principle, mutually exclusive), one may argue that the existence of probe-driven movement does not rule out the possibility of foot-driven movement—in other words, movement driven by the needs of the moved element, rather than its landing site (or some element close to its landing site). It has been argued that the existence of such movement is an empirical necessity (see van Craenenbroeck 2006, Platzack 1996, Preminger 2007, 2008, van Riemsdijk 1997; see also Lasnik’s 1995 Enlightened Self-Interest). In this case, one could say that who moves out of the embedded clause in (32) because it needs to be in an operator position, and one is unavailable within the embedded clause.

For expository purposes, I will adopt the former approach (based on interpretable-but-unvalued operator-features on \(C^0\)—though nothing that follows hinges on this particular implementation, nor rules out alternative approaches to this specific issue.

The derivation of (32) would thus proceed by means of \([iOp_\phi]\) on \(C^0\) attracting who. Being an unvalued feature, \([iOp_\phi]\) will fail to turn \([uOp_{\text{wh}}]\) on who into an interpretable feature (see fn. 11); the latter will therefore remain visible to a higher probe (e.g., one that is located at the matrix periphery). This is also the reason why a wh-element (such as who) cannot be left in the \([\text{Spec,CP}]\) position of a declarative clause:

(34) * I think who\(_1\) (that) Dan met \(_1\).

The uninterpretable \([uOp_{\text{wh}}]\) on the wh-element must eventually be rendered interpretable (e.g., by \([iOp_{\text{wh}}]\) on the matrix \(C^0\), as in (32)).

In the case of a declarative clause that does not contain a wh-element, \([iOp_\phi]\) on \(C^0\) will reach the \(C(\text{onceptual})I(\text{ntentional})\) interface (or “LF”) unchanged. This is a harmless result: being interpretable, \([iOp_\phi]\) will not cause the derivation to crash; it will simply be semantically vacuous.

Of course, long-distance wh-movement out of declarative clauses, as in the English (32), exists in Hebrew as well:

(35) et-mi \(\text{ata xošev še-Dan pagaš?}\)

\(\text{ACC-who you think that-Dan met}\)

‘Who do you think that Dan met?’

\(^{11}\) In this, I depart from the assumptions made by Pesetsky & Torrego (2007), as their system does not address the cyclicity/phasehood problem discussed in the text. This departure from Pesetsky & Torrego’s (2007) proposal can be characterized as follows:

(i) an interpretable feature \([iF]\) on a probe \(P\) will render \([uF]\) on the goal interpretable only if \([iF]\) on \(P\) is valued

Note that this caveat is irrelevant to the kind of Probe-Goal relations proposed by Chomsky (1995)—since in those cases, it is the probe that bears the uninterpretable instance of the feature, while the goal bears the interpretable instance (e.g., in the relation between the \(q\)-probe on \(T^0\) and a subject DP, \(number\) on \(T^0\) is uninterpretable, while \(number\) on a subject DP is interpretable).
The likely conclusion is that declarative C^0 in Hebrew (as in the embedded clause in (35)) is just like its English counterpart—namely, equipped with $[iOp_\phi]$. However, in Hebrew, the same phenomenon exemplified by (32/35) is also found with wh-movement out of embedded interrogative clauses. As an example, recall (18a), repeated here:

(18) a. [eyze sefer]$_2$ šaxaxta $[CP$ [le-mi]$_1$ Dan šalax t_1 t_2]? which book forgot.2SG DAT-who Dan sent ‘[Which book]$_2$ did you forget [to whom]$_1$ Dan sent t_2 t_1?’

A straightforward account for this would be to assume that in Hebrew, interrogative C^0—just like declarative C^0—is equipped with $[iOp_\phi]$.

12 As a result, the derivation will proceed as follows. First, $[iOp_{wh}]$ on Foc0 will attract the hierarchically closest wh-element to [Spec,FocP]—as shown in (31), repeated here:

\[\begin{array}{c}
wh_1 \\
\downarrow \\
Foc^0 \\
\downarrow \\
\cdots wh_1 \cdots wh_2 \cdots
\end{array} \]

When C^0 is merged, its $[iOp_\phi]$ feature will attract the other wh-element to [Spec,CP], giving rise to the following pattern:

\[\begin{array}{c}
wh_1 \\
\downarrow \\
Foc^0 \\
\downarrow \\
\cdots wh_1 \cdots wh_2 \cdots
\end{array} \]

\[\begin{array}{c}
\text{[eyze sefer] } \\
\text{šaxaxta } [CP] [le-mi] [Dan šalax t_1 t_2]?
\end{array} \]

\[\text{which book } \text{forgot.2SG } \text{DAT-who Dan sent}
\]

\[\text{‘[Which book] } \text{did you forget [to whom] } \text{Dan sent t_2 t_1?’}
\]

12In fact, nothing goes wrong if one assumes that both declarative C^0 and interrogative C^0, both in Hebrew and in English, are equipped with $[iOp_\phi]$. Since interrogative C^0 in English is also equipped with $[iOp_{wh}]$, the latter will render the $[uOp_{wh}]$ feature found on wh-elements interpretable (i.e., changing it to $[iOp_{wh}]$)—and these wh-elements will therefore move no further. The “superfluous” unvalued $[iOp_\phi]$ on interrogative C^0 in English will be prevented from attracting another wh-element by the restriction of CP to a single specifier position (and just like in the case of declaratives that lack a wh-element, it will result in harmless semantic vacuity when $[iOp_\phi]$ reaches the semantic interface). The relevant difference between Hebrew and English would then be restricted to the availability, in Hebrew, of a valued operator-feature (i.e., $[iOp_{wh}]$) on a projection lower than CP.

This version is arguably more uniform, and therefore perhaps more appealing, than the one presented in the text—but this is significant only if one commits oneself to an approach based on interpretable-but-unvalued features, with respect to driving long-distance wh-movement.
Given that CP is a phase, only wh_2 will be accessible to further computation. In particular, the $[iOp_{wh}]$ feature on a higher Foc^0 will be able to attract wh_2, as shown below:

Thus, successive-cyclic wh-movement out of Hebrew interrogative clauses (and in fact, out of any Hebrew clause) is on a par with wh-movement out of English declarative clauses.

Moreover, such an account also derives another generalization about wh-movement in Hebrew. Recall that in section 2, it was pointed out that there is a seemingly independent constraint against the appearance of more than one wh-element at a given clausal periphery—as demonstrated in (2a–b), repeated here:

(2)
 a. * [ma]_1 [le-mi]_2 Dan natan t_1 t_2?
 what DAT-who Dan gave
 b. * [le-mi]_1 [ma]_2 Dan natan t_2 t_1?
 DAT-who what Dan gave
As was shown in (3a–b) (repeated below), this is not a constraint against two wh-elements being base-generated in the same clause (as in (3a)), or even against two wh-elements that were base-generated in the same clause both undergoing wh-movement (as in (3b)):

\[(3) \quad a. \quad [má]_1 \text{Dan natan } t_1 \text{ le-mi?} \\
\quad \text{what Dan gave } \text{DAT-who} \\
\quad \text{‘What did Dan give to whom?’} \\
\quad b. \quad [má]_2 \text{Dina šaxexa } [\text{le-mi}]_1 \text{ Dan natan } t_1 \text{ } t_2? \\
\quad \text{what Dina forgot } \text{DAT-who Dan gave} \\
\quad \text{‘[What] 2 did Dina forget [to whom] 1 Dan gave } t_2 \text{ } t_1?’ \]

The current approach captures this generalization: while the \([uOp_{wh}]\) feature on the first wh-element is rendered interpretable (i.e., changed to \([iOp_{wh}]\)) by the corresponding \([iOp_{wh}]\) feature on \(\text{Foc}^0\), the \([iOp_{φ}]\) feature on \(\text{C}^0\) does not have the same effect on the second wh-element (see the discussion above). Therefore, a wh-element that has been attracted to \(\text{C}^0\) by \([iOp_{φ}]\) must eventually be attracted by a higher \(\text{Foc}^0\), to have its own \([uOp_{wh}]\) feature rendered interpretable (i.e., changed to \([iOp_{wh}]\)).

This is completely equivalent to the behavior of English declarative \(\text{C}^0\)—as exemplified in (34), repeated below—and is fully expected if the featural content of Hebrew interrogative \(\text{C}^0\) is on par with English declarative \(\text{C}^0\) (as proposed earlier).

\[(34) \quad * \text{I think who}_1 \text{ (that) Dan met } t_1. \]

The ungrammaticality of (2) is therefore of the same nature as the ungrammaticality of (34).\(^{13}\)

To recapitulate, while two wh-elements can derivationally occupy the same clausal periphery in Hebrew, only one—the one in \([\text{Spec,FocP}]\)—can have its \([uOp_{wh}]\) operator-feature rendered interpretable (i.e., changed to \([iOp_{wh}]\)) at a given clausal periphery; the other will invariably have to move on, to a higher \([\text{Spec,FocP}]\), in order to have its own \([uOp_{wh}]\) feature rendered interpretable (i.e., changed to \([iOp_{wh}]\)). As a result, no two wh-elements will ever appear overtly at the same clausal periphery in Hebrew.

Crucially, no novel mechanisms are invoked here that are not independently needed to account for wh-movement out of embedded declaratives in English.

5.2.2. The Superiority Pattern Derived

As shown in section 3.1, when there are multiple interrogative clausal peripheries in a given sentence, the lower periphery attracts the higher wh-element, in essence obeying \(\text{Shortest Attract}\). The higher clausal periphery then attracts the remaining (lower) wh-element. As discussed in section 3.1, this pattern is in line with a large body of work regarding the requirement that \(\overline{\text{A}}\) filler-gap dependencies be nested, rather than crossing (see \(\text{Fodor 1978, Kayne 1984, Pesetsky 1982}\), among others). However, given the current proposal, there is no need for recourse to anything other than general, independently motivated primitives

\(^{13}\)Note that superiority effects could rule out at most one of the two sentences in (2a–b), and in fact probably rule out neither (see fn. 4).
governing the economy of syntactic movement—and in particular, the structural proximity between probe and goal.14

Let us assume that something like \textit{Shortest Attract}, the \textit{Minimal Link Condition}, or any other comparable economy condition on movement, is operative. Upon merger of Foc0, its [iOp\textsubscript{wh}] feature will attract the hierarchically closest wh-element in its search domain. For expository purposes, suppose that wh\textsubscript{1} asymmetrically c-commands wh\textsubscript{2}. In this state of affairs, it will necessarily be wh\textsubscript{1} that is attracted to [Spec,FocP]:

Assuming an unvalued [iOp\textsubscript{φ}] feature on C\textsubscript{0} (as outlined in section 5.2.1), wh\textsubscript{2} will then be attracted to [Spec,CP]. Note that even though wh\textsubscript{1} is closer—in fact, both the copy of wh\textsubscript{1} in [Spec,FocP] and the topmost A-position of wh\textsubscript{1} are closer—its wh-feature has been rendered interpretable and checked by [iOp\textsubscript{wh}] on Foc\textsubscript{0}, hence it is invisible for the current computation. We therefore arrive at the following state of affairs:15

14As a reviewer points out, in certain languages that allow multiple-wh movement, the dependencies between filler and gap do exhibit crossing patterns (Bošković 1997, Richards 2001, Rudin 1988), suggesting that it may be advantageous to avoid an explicit constraint that enforces the nesting (rather than crossing) of dependencies.

15On the effects (or lack thereof) of an additional phase at the VP level (e.g., v *P), see section 6.1.
As discussed in section 5.2.1, the fact that CP is a phase means that only \(\text{wh}_2\) will be available for subsequent computation, and in particular, movement into a higher clause.\(^{16}\) By hypothesis, such movement into a higher clause will be the result of a higher \(\text{Foc}^0\) attracting \(\text{wh}_2\) from the embedded [Spec,CP], as schematized below:

(40)

\[
\begin{array}{c}
\text{wh}_2 \\
\downarrow \\
\text{Foc}^0 \\
\downarrow \\
\text{t}_{\text{wh}_2} \\
\downarrow \\
\text{C}^0 \\
\downarrow \\
\text{wh}_1 \\
\downarrow \\
\text{Foc}^0 \\
\downarrow \\
\text{t}_{\text{wh}_1} \\
\downarrow \\
\cdots \\
\downarrow \\
\text{t}_{\text{wh}_2}
\end{array}
\]

Given the general schema in (40), let us turn to analyzing the examples presented in section 3.1. As a first example, recall (9a–b), repeated here:

(9) a. \([\text{et ma}]_2\) Dan šaxax [CP [mi]_1 t_1 axal t_2]?
 ACC what Dan forgot who ate
 ‘[What]_2 did Dan forget [who]_1 t_1 ate t_2?’
 b. * [mi]_1 Dan šaxax [CP [et ma]_2 t_1 axal t_2]?
 who Dan forgot ACC what ate

Consider the embedded clause in (9a–b), abstracting away from certain irrelevant details:

(41) \([\text{TP mi} [\text{axal et ma}]]\)
 who ate ACC what

In (41), both wh-elements are at their A-positions. The element \(\text{mi}\) (‘who’) is hierarchically higher (i.e., equivalent to \(\text{wh}_1\) in the general schema, in (40)). When \(\text{Foc}^0\) probes for wh-elements, it will attract \(\text{mi}\) (‘who’), moving it to [Spec,FocP] and rendering it syntactically inactive:

\(^{16}\)In fact, for this particular configuration, one need not appeal to the phasehood of CP at all. Assuming a hierarchically higher-up probe \(P\), \(\text{wh}_2\) will be the closest syntactically active wh-element in \(P\)’s domain. However, as will become evident during the discussion of islandhood phenomena in Nested Interrogatives (in section 5.2.3), the phasehood of CP is indeed operative.
(42) \[
\begin{array}{c}
\text{[FocP} [mi]_1 [TP t_1 [axal [et ma]]]])\\
\text{who ate ACC what}
\end{array}
\]

Now, when C^0 probes, only et ma (‘ACC what’) remains as an active wh-elements, and it will be moved to [Spec,CP]:

(43) \[
\begin{array}{c}
\text{[CP} [et ma]_2 [FocP [mi]_1 [TP t_1 [axal t_2]]]])\\
\text{ACC what who ate}
\end{array}
\]

Being at [Spec,CP], et ma (‘ACC what’) is at the edge of the phase, and therefore accessible for further computation. Thus, it subsequently moves to the matrix [Spec,FocP], as illustrated below:

(44) \[
\begin{array}{c}
\text{[FocP} [et ma]_2 Dan šaxax [CP t_2 [FocP [mi]_1 [TP t_1 [axal t_2]]]])\\
\text{ACC what Dan forgot who ate}
\end{array}
\]

This successfully derives the grammatical (9a).

In the ungrammatical (9b), the matrix Foc^0 putatively attracts mi (‘who’). Since both the A-position of mi (‘who’), and its position at the left periphery of the embedded clause, are within the complement domain of the embedded C^0, neither is accessible to probing by the time the matrix Foc^0 probes (by virtue of the PIC). In addition, given that mi (‘who’) has moved to the embedded [Spec,FocP] position, its operator features will already have been checked by the time the matrix Foc^0 probes, rendering it inactive. Both of these considerations render (9b) an illicit computation.

As a further example, recall (10a–b), repeated here:

(10) a. \[
\begin{array}{c}
\text{[et ma]_2 Dan šaxax [CP [le-mi]_1 siparti t_1 [CP še-Rina axla t_2]]})\\
\text{ACC what Dan forgot DAT-who told.1SG that-Rina ate}
\end{array}
\]

‘[What] did Dan forget [to whom] I told that Rina ate?’

b. * \[
\begin{array}{c}
\text{[le-mi]_1 Dan šaxax [CP [et ma]_2 siparti t_1 [CP še-Rina axla t_2]]})\\
\text{DAT-who Dan forgot ACC what told.1SG that-Rina ate}
\end{array}
\]

The most-embedded clause in (10) is declarative, as evinced by the overt declarative complementizer še (‘that’). As a result, there is no feature on the most-embedded Foc^0 to attract et ma (‘ACC what’), and it cannot move there.

Since et ma (‘ACC what’) is attracted by the most-embedded C^0 rather than the most-embedded Foc^0, it moves to the most-embedded [Spec,CP], and is accessible for movement to the higher clause:

(45) \[
\begin{array}{c}
\text{[TP siparti le-mi [CP [et ma]_2 [C še-Rina axla t_2]]})\\
\text{told.1SG DAT-who ACC what that-Rina ate}
\end{array}
\]
When Foc^0 immediately above the TP in (45) probes, it will attract the hierarchically-higher $le-mi$ (‘DAT-who’), moving it to [Spec,FocP]:

$$\text{(46) } \begin{array}{c}
[FocP \ [le-mi]]_1 [\text{TP siparti } t_1 [\text{CP } [et \ ma]_2 \text{še-Rina axla } t_2]] \\
\text{DAT-who told.1SG ACC what that-Rina ate}
\end{array}$$

The C^0 immediately above the FocP in (46) will attract the remaining wh-element, namely et ma (‘ACC what’):

$$\text{(47) } \begin{array}{c}
[\text{CP } [et \ ma]_2 [FocP \ [le-mi]]_1 [\text{TP siparti } t_1 [\text{CP } t_2 \text{še-Rina axla } t_2]]] \\
\text{ACC what DAT-who told.1SG that-Rina ate}
\end{array}$$

Being at the edge of the intermediate CP, et ma (‘ACC what’) will then be the only candidate for successive wh-movement to the periphery of the matrix clause:

$$\text{(48) } \begin{array}{c}
[FocP [et \ ma]_2 \text{Dan šaxax } [\text{CP } t_2 [FocP [le-mi]]_1 [\text{TP siparti } t_1 [\text{CP } t_2 \text{še-...]]]]] \\
\text{ACC what Dan forgot DAT-who told.1SG that-...}
\end{array}$$

This successfully derives the grammatical (10a).

In the ungrammatical (10b), the matrix Foc^0 attempts to attract $le-mi$ (‘DAT-who’), all copies of which are within the complement domain of the embedded C^0, and thus inaccessible by that point in the derivation (by virtue of the PIC). In addition, given that $le-mi$ (‘DAT-who’) has moved to the embedded [Spec,FocP] position, its operator features will already have been checked by the time the matrix Foc^0 probes, rendering it inactive. Both of these considerations render (10b) an illicit computation.

5.2.3. The Distribution of wh-Islandhood Derived

As noted in section 3.2, short wh-movement (i.e., movement of an element to the periphery of the clause where it was base-generated) does not “clog” the left periphery of the Hebrew clause. Long wh-movement, however, does exactly that: it renders the clause from which the wh-element was extracted an island.

If Foc^0 carries a [iOp$_{wh}$] feature—as proposed in section 5.1—it provides a left-peripheral landing site for a wh-element (i.e., [Spec,FocP]), which crucially does not involve the CP projection. Thus, when an element moves to the periphery of the clause where it was base-generated, it need not pass through [Spec,CP] at all. This was schematized in (37), repeated here:
The availability of a left-peripheral landing-site, distinct from the clausal escape hatch, explains why short wh-movement will not give rise to islandhood.

Long wh-movement, however, necessarily involves a wh-element moving out of the CP in which it was base-generated. Since the FocP projection is within the complement domain of C^0, it is not accessible to computation outside of the CP phase. Therefore, movement to [Spec,FocP] (as described above) would not suffice to facilitate the wh-element escaping that phase. The element must exit the complement domain of C^0 entirely—and in Hebrew, that means passing through the single specifier position of CP.
This renders the single edge position of CP occupied, preventing any further extraction from within the CP phase—which explains why long wh-movement does give rise to islandhood in Hebrew.

Let us now turn to analyzing the examples presented in section 3.2. Recall (18a), repeated here:

(18) a. [eyze sefer]₂ šaxaxta [CP [le-mi]₁ Dan šalax t₁ t₂]?
which book forgot.2SG DAT-who Dan sent
‘[Which book]₂ did you forget [to whom]₁ Dan sent t₂ t₁?’

The embedded clause in (18a) starts out as follows:

(50) [TP Dan šalax [le-mi] [eyze sefer]]
Dan sent DAT-who which book

By hypothesis, the embedded Foc⁰ carries a [iOp wheels feature. Consequently, it probes for a wh-
element and attracts le-mi (‘DAT-who’):

(51) [FocP [le-mi]₁ [TP Dan šalax t₁ [eyze sefer]]]
DAT-who Dan sent which book

Crucially, this state of affairs leaves [Spec,CP] available for subsequent movement of a wh-
element out of the same embedded clause. Hence, when C⁰ (or more accurately, [iOpφ] on C⁰)
probes, it will attract eyze sefer (‘which book’):

(52) [CP [eyze sefer]₂ šaxaxta [FocP [le-mi]₁ [TP Dan šalax t₁ t₂]]]
which book FocP DAT-who Dan sent

The phrase eyze sefer (‘which book’) is now at the edge of the CP phase, rendering it accessible
to further computation. It will then be attracted by [iOpwh] on the matrix Foc⁰, moving it to
its surface position in the matrix periphery:

(53) [FocP eyze sefer]₂ šaxaxta [CP t₂ [FocP [le-mi]₁ [TP Dan šalax t₁ t₂]]]
which book forgot.2SG DAT-who Dan sent

Now recall (19a), repeated below—the ungrammatical counterpart of (18a), above:

(19) a. * [eyze sefer]₂ šaxaxta [CP [le-mi]₁ Rina xašva [CP še-Dan šalax t₁ t₂]]?
which book forgot.2SG DAT-who Rina thought that-Dan sent
‘[Which book]₂ did you forget [to whom]₁ Rina thinks that Dan sent t₂ t₁?’

As discussed in section 3.2, the difference that underlies the contrast between (18a) and (19a)
is one of short vs. long wh-movement. Specifically, the crucial factor is whether there exists a

17It just so happens that superiority, as discussed in section 5.2.2, is immaterial to this step in the derivation, since two internal arguments are involved. See fn. 4.
clausal periphery through which two wh-elements have passed, such that both wh-elements have undergone long-distance wh-movement.

To see how this follows from the current proposal, recall the restriction of the Hebrew CP to a single specifier. This entails that at most one element can ever “completely escape” a given clause—i.e., move to a position strictly outside of the clause. In (19a), however, both wh-elements (eyze sefer ‘which book’, and le-mi ‘DAT-who’) appear overtly outside of the most embedded clause, where both were base-generated. Given the PIC, this means that each must have passed through the specifier of the most embedded CP—but this is impossible, since by hypothesis, there is only one [Spec,CP] position.

The derivation of (19a) therefore incurs a PIC violation, with respect to either the link of eyze sefer ‘which book’ to its position inside the most-embedded CP, or the link of le-mi ‘DAT-who’ to its position inside that CP.

As a further example, recall (18c), repeated here:

(18) c. ? [et ma]₂ yadata [CP še-Rina zaxra [CP [mi-mi]₁ Dan lakax t₁ t₂]]?
 ACC what knew.2SG that-Rina recalled from-who Dan took
 ‘[What]₂ did you know that Rina recalled [from whom]₁ Dan took t₂ t₁?’

The most-embedded clause in (18c) starts out as follows:

(54) [TP Dan lakax [mi-mi] [et ma]]
 Dan took from-who ACC what

The [iOp_{wh}] feature on the most-embedded Foc⁰ would then attract mi-mi (‘from-who’) to [Spec,FocP]:

(55) [FocP [mi-mi]₁ [TP Dan lakax t₁ [et ma]]]
 from-who Dan took ACC what

Subsequently, [iOp_φ] on C₀ attracts et ma (‘ACC what’) to [Spec,CP]:

(56) [CP [et ma]₂ [FocP [mi-mi] [TP Dan lakax t₁ t₂]]]
 ACC what from-who Dan took

Given the PIC, only et ma (‘ACC what’)—and not mi-mi (‘from-who’)—will be visible for computation outside of this CP. This is precisely what happens in (18c)—et ma (‘ACC what’) is moved successive-cyclically to the matrix [Spec,FocP]:

(57) [FocP [et ma]₂ yadata [CP t₂ še-[FocP [TP Rina zaxra [CP t₂ [...]]]]]]
 ACC what knew.2SG that- Rina recalled

18See fn. 4 regarding superiority in Hebrew ditransitives.
Note that *et ma* (‘ACC what’) is not attracted by the intermediate Foc\(^0\), because the intermediate clause is declarative (as evinced by the overt declarative complementizer, še ‘that’; see the discussion of (10) in section 5.2.2). Instead, it is attracted by the intermediate C\(^0\); being at [Spec,CP], it is then accessible for movement to the matrix [Spec,FocP].

Now recall (19c), repeated below—the ungrammatical counterpart of (18c), above:

(19) c. *[et ma]\(_2\) yadata [CP [mi-mi]\(_1\) Rina zaxra [CP še-Dan lakax t\(_1\) t\(_2\)]]?
 ‘[What]\(_2\) did you know [from whom]\(_1\) Rina recalled that Dan took t\(_2\) t\(_1\)’

In (19c), both *et ma* (‘ACC what’) and *mi-mi* (‘from-who’) “completely escape” the most-embedded clause, where they were both base-generated—in other words, they both appear overtly outside of the most-embedded CP. As discussed earlier, this implies that they both moved through the most-embedded [Spec,CP]; but since there is only one specifier for CP, this could not occur. The only remaining alternative is that one of them moved out of the most-embedded CP from a position strictly within it (i.e., within the complement domain of the most-embedded C\(^0\)), therefore incurring a PIC violation.

The proposal therefore predicts the ungrammatical status of (19c).

Finally, note that the analysis predicts Nested Interrogatives with more than two wh-elements should be possible, as long as all but one of the wh-elements undergo clause-local wh-movement.\(^{19}\) This prediction is indeed borne out:

(58) ? *[et ma]\(_2\) Rina šaxexa [CP mi\(_3\) t\(_3\) zaxar [CP [mi-mi]\(_1\) Dan kibel t\(_1\) t\(_2\)]]?
 ‘[What]\(_3\) did Rina forget [who]\(_3\) t\(_3\) recalled [from whom]\(_1\) Dan received t\(_2\) t\(_1\)’

6. Odds and Ends

6.1. PIC and the Verb-Ph(r)ase

A putative problem for the account developed so far is the status of phases headed by a verbal projection.\(^{20}\) The analysis of superiority effects in section 5.2.2 relied on the following assumption: at the point in the derivation where operator-features probe for wh-elements, the internal arguments of the lexical verb are either at their base positions, or at least stand in a hierarchical configuration that mirrors the configuration that they had at their base positions. The question is, how the existence of a phase-boundary at the verb-phrase level would affect this assumption.

\(^{19}\)Thanks to an anonymous reviewer for pointing this out.

\(^{20}\)The identity of the head of the verb-phrase phase, as well as the exact set of verbs for which phasehood would be triggered, is subject to much debate in the literature. Chomsky (2001) states that the VP-level phase is headed by little-v, and that only transitive and unergative verbs trigger (strong) phasehood (encoded as the distinction between v\(^*\)P and vP; Chomsky 2001). Fox (2002) and Legate (2003), and Richards (2004, 2007a) show evidence that passive/unaccusative/raising verb-phrases constitute a phase, on par with transitive verb-phrases. Horvath & Siloni (2002) argue against the very existence of the little-v projection, but later propose that the lexical verb itself serves as the head of the verbal phase (Horvath & Siloni 2006).

The exact view that one chooses to adopt regarding the phasehood of the verb-phrase is not crucial to the current discussion, as will be shown below.
In this subsection, I will examine the effects of such a phase-boundary on the predictions presented in previous sections (and in particular, on the aforementioned assumption), and show that in fact, there are no such effects—in other words, the existence of a verb-phrase level phase-boundary is immaterial to the current analysis.

For concreteness, let us assume that unergative and transitive verb-phrases are selected by v^*, which heads a strong phase (this specific implementation follows Chomsky 2001, but as will be shown below, nothing ends up depending on a particular conception or distribution of the verb-phrase level phase).

If the internal arguments of the verb are enclosed within the v^*P phase, they will be inaccessible by the time C^0 probes for wh-elements—unless of course they have moved to the periphery of their phase (i.e., [Spec, v^*P]), as is commonly assumed.

A somewhat more subtle question concerns the accessibility of an internal argument to probing by Foc^0. As noted by Müller (2004) and Richards (2006), there are two variants of the $P(hase)I(mpenetrability)C(ondition)$ currently “on the market”:

(59) a. “PIC1” (Chomsky 2000):
 In a phase α headed by H^0, the domain of H^0 is not accessible to operations outside of α. Only H^0 and its edge are accessible to such operations.

b. “PIC2” (Chomsky 2001):
 If Z^0 is the next phase head up after H^0, the domain of H^0 is not accessible to operations at ZP. Only H^0 and its edge are accessible to such operations.

As argued by Richards (2006), the only empirical difference between PIC1 and PIC2 is their predictions regarding the accessibility of the domain of H^0 to probing from outside of the HP phase in the derivational interval before Z^0 (the next phase head up) has been merged.

In the following sub-sections, I will consider the predictions made by both variants of the PIC, with respect to Nested Interrogatives in Hebrew.

6.1.1. A wh-Subject and a Lower wh-Element

Consider a configuration involving a wh-subject, in addition to another, hierarchically lower wh-element. Such a configuration is attested in (9a), repeated here:

(9) a. [et ma]$_2$ Dan šaxax [CP [mi]$_1$ t$_1$ axal t$_2$]?
 ACC what Dan forgot who ate
 ‘[What]$_2$ did Dan forget [who]$_1$ t$_1$ ate t$_2$?’

Since axal (‘ate’) is a transitive verb, the embedded clause must contain a v^*P, and the wh-subject mi (‘who’) must originally be merged as a specifier of that v^*P. The object wh-element, $et ma$ (‘ACC what’), eventually moves out of the embedded CP entirely, meaning it passes through the embedded [Spec,CP]. As discussed above, regardless of which version of the PIC is adopted, the accessibility of $et ma$ (‘ACC what’) to probing by C^0 entails that it first must move to [Spec,v^*P]. This means v^*P necessarily has more than one specifier.21

21
As shown by Richards (1997, 2001), movement to multiple specifiers of the same head observes a “tucking-in” topography—in other words, a moved phrase will form a new specifier in between the head of the targeted projection and its closest existing specifier (if one exists). Note that this conclusion obtains even if one adopts the view that all operations within a phase take place simultaneously at the phase level (Chomsky 2001, 2008)—since Richards’ (1997, 2001) argument is based on locality considerations, rather than the timing of movement operations.

If it were the case that locality considerations—such as “tucking-in”—could be obviated by the simultaneity of operations at the phase level, one would not expect superiority effects to show up between two wh-arguments both of which are base-generated below the v *P-phase in an interrogative clause. This is because, by the time the interrogative periphery probes, the two wh-elements would be located in multiple-specifiers of the relevant v *P—where, given the aforementioned simultaneity, they could presumably appear in either hierarchical order. However, such superiority effects are in fact attested:

(60) a. [To whom]_1 did Mary [v,*P mention t_1 that John would buy what]?
 b. ?? [What]_1 did Mary [v,*P mention to whom that John would buy t_1]?

This demonstrates that even if phase-level simultaneity is assumed, it cannot subsume all of the phenomena meant to be handled by locality considerations, of the kind addressed by Richards’ (1997, 2001) arguments.

Assuming that a head performs lexical selection prior to performing Agree/search—a likely assumption, given the more stringent locality conditions on lexical selection, compared to Agree/search (see Matushansky 2006)—the presence of an external argument will derivationally precede movement of the wh-element to [Spec,v *P]. Thus, “tucking-in” would predict that the object would be moved to a specifier position in between the external argument and the v* head:

\[\text{It is more than somewhat suspicious that while CPs with single-specifier restrictions are cross-linguistically quite common, the same behavior for v *P is rare or impossible; in fact, any language that allows extraction in a configuration such as (i), below, must allow for multiple v *P specifiers:} \]

(i) Who_2 did John_1 [v,*P t_1 say that Mary met_2]?

Since the verb say, in (i), has an external argument, there must be a second specifier of v *P to enable movement of who out of the v *P phase.

Whether this asymmetry between CPs and v *Ps is to be taken as a counter-argument to the phasehood of little-v—or alternatively, as a counter-argument to the single-specifier restriction—is beyond the scope of this paper.

\[\text{Thanks to an anonymous reviewer for raising this concern.} \]

\[\text{Note that, abstracting away from Pair/Tuple-List questions, there is nothing wrong with extraction of the} \]

\[\text{kind shown in (60b):} \]

(i) What did Mary [v,*P mention to Bill that John would buy t_1]?

\[\text{21} \text{It is more than somewhat suspicious that while CPs with single-specifier restrictions are cross-linguistically quite common, the same behavior for v *P is rare or impossible; in fact, any language that allows extraction in a configuration such as (i), below, must allow for multiple v *P specifiers:} \]

(i) Who_2 did John_1 [v,*P t_1 say that Mary met_2]?

Since the verb say, in (i), has an external argument, there must be a second specifier of v *P to enable movement of who out of the v *P phase.

Whether this asymmetry between CPs and v *Ps is to be taken as a counter-argument to the phasehood of little-v—or alternatively, as a counter-argument to the single-specifier restriction—is beyond the scope of this paper.

\[\text{Thanks to an anonymous reviewer for raising this concern.} \]

\[\text{Note that, abstracting away from Pair/Tuple-List questions, there is nothing wrong with extraction of the} \]

\[\text{kind shown in (60b):} \]

(i) What did Mary [v,*P mention to Bill that John would buy t_1]?
Crucially, this state of affairs preserves the hierarchical relations between \(wh_1\) (the external argument) and \(wh_2\) (the lower \(wh\)-element): \(wh_1\) still c-commands \(wh_2\).

Thus, a \(Foc^0\) or \(C^0\) head probing for \(wh\)-elements from outside of this \(v^*P\) phase would be confronted with the same hierarchical relations (between \(wh_1\) and \(wh_2\)) as it would if the strong phase had not been there at all—regardless of which of the two versions of the PIC is adopted; one might call this the property of “phase transparency”. Hence, for cases involving a \(wh\)-subject and a lower \(wh\)-element, a strong phase at the VP level makes no difference with respect to the predictions made by the current proposal.

6.1.2. Two Internal \(wh\)-Arguments

In addition to the configuration discussed in section 6.1.1, there are also cases of two \(wh\)-elements which originate as internal arguments, both of which undergo \(wh\)-movement. Recall (18a), repeated here:

\[
(18a) \quad [\text{eyze sefer}]_2 \text{šaxaxta} [\text{CP } [\text{le-mi}]_1 \text{Dan šalax } t_1 \text{ } t_2]?
\]

Both internal arguments have observably escaped the verb-phrase of šalax (‘sent’). While eyze sefer (‘which book’) has moved all the way out of the embedded CP, le-mi (‘DAT-who’) has remained within it. Given the current proposal, le-mi (‘DAT-who’) has moved to the embedded [Spec,FocP].

Here, the two versions of the PIC diverge slightly (though, as will be shown, without significant consequence). Given PIC1 (59a), both \(Foc^0\) and \(C^0\) cannot probe into the complement domain of \(v^*\). The formulation of PIC2 (59b), on the other hand, entails that the \(v^*P\) phase is not “closed off” until the next phase head (namely, \(C^0\)) is merged. Thus, \(Foc^0\) is able to probe into the complement domain of \(v^*\).

It may seem that the different versions of the PIC therefore give us different predictions regarding which of the \(wh\)-elements in (18a) need to relocate to [Spec,\(v^*P\)]. Under PIC1, both \(wh\)-elements need to move to [Spec,\(v^*P\)]. Under PIC2, it would appear that only the \(wh\)-element that moves to [Spec,CP] needs to move to [Spec,\(v^*P\)], since \(Foc^0\) can probe all the way into \(v^*P\).

However, such a conclusion would be mistaken. Consider what happens if only one of the internal arguments moves to [Spec,\(v^*P\)]:

\[
(61)
\]
Note that movement to [Spec, v *P] is a form of successive-cyclicity; it does not render the wh-feature on the wh-element interpretable. Thus, in the configuration depicted above, probing by Foc⁰ would result in wh₁, the wh-element that has been moved to [Spec, v *P], being attracted and moved to [Spec,FocP]. That is because wh₁ constitutes the closest syntactically active wh-element. Once at [Spec,FocP], wh₁ would be inactive, and thus move no further. As discussed earlier, C⁰ could not probe into v *P, and therefore wh₂ would not move either—meaning a derivation in which only one of the internal arguments has moved to [Spec,v *P] could never give rise to wh-movement of both internal arguments—and as a result, would never give rise to a Nested Interrogative construction.

Therefore, every derivation involving wh-movement of more than one internal argument necessarily involves both of them moving to [Spec,v *P]. Given “tucking-in”, this would give rise to the following configuration:

Crucially, the representation in (63) shares with (61) the property of “phase transparency”—in other words, the v *P phase preserves the hierarchical relations between wh₁ and wh₂, that existed at their base positions.

- 29 -
Once again, we have arrived at the conclusion that whether or not a VP level-phase exists (and whether one adopts PIC1 or PIC2), a higher Foc\(^0\) or C\(^0\) head will be faced with the same hierarchical configuration when it probes—and therefore, the predictions discussed in earlier sections stand, regardless of whether or not such a phase boundary exists.

6.2. wh-Adverbials

In dealing with superiority effects in Hebrew Nested Interrogatives (sections 3.1 and 5.2.2), only wh-elements that function as arguments of the verb were considered. The behavior of wh-adverbials, on the other hand, might appear problematic:

\[(64)\]

a. * [eyx\(_2\)] Dina tahata ([eyze asir\(_1\)] [TP t\(_1\) nimlat me-ha-kele t\(_2\)]? how Dina wondered which prisoner escaped from-the-prison

b. ? [eyze asir\(_2\)] Dina tahata ([eyx\(_1\)] [TP t\(_2\) nimlat me-ha-kele t\(_1\)]? which prisoner Dina wondered how escaped from-the-prison

‘[Which prisoner]\(_2\) did Dina wonder [[how]\(_1\) [TP t\(_2\) escaped from prison t\(_1\)]]’

Prima facie, it seems that the superiority pattern observed in section 3.1 (and analyzed in section 5.2.2) is reversed: the wh-adverbial moves clause-locally, whereas the subject moves out of the embedded clause, to the matrix periphery.

However, this is only a reversal of the aforementioned superiority pattern on the assumption that the subject originates in a hierarchically higher position than the wh-adverbial. It has been argued (for various wh-adverbials in various languages) that some wh-adverbials can be base-generated in clause-peripheral operator position, as opposed to arriving there via A-movement.\(^{24}\) If this is indeed the case regarding eyx ‘how’ in Hebrew, then the superiority pattern in (64) is to be expected. The wh-adverbial would be base-generated in [Spec,FocP], which was independently established as an operator position in Hebrew (see section 5.1.2), leaving only [Spec,CP] available for the wh-subject—facilitating its subsequent movement to the matrix periphery:

\[(65)\]

\[\text{[eyze asir\(_1\)] Dina tahata [CP t\(_1\) [FocP eyx [TP t\(_1\) nimlat me-ha-kele]]]? which prisoner Dina wondered how escaped from-the-prison ' [Which prisoner]\(_1\) did Dina wonder [CP how t\(_1\) escaped from prison]?’\]

If this property of wh-adverbials is indeed the relevant characteristic, the prediction is that wh-elements that are adjuncts (as opposed to arguments), but are not wh-adverbials, would pattern with verbal arguments in terms of superiority. This is indeed the case:

\[(66)\]

a. ? [be-eyzo universita\(_2\)] Dan šaxax [CP t\(_2\) [FocP [mi\(_1\)] [TP t\(_1\) lamad t\(_2\)]? in-which university Dan forgot who studied

‘[In which university]\(_2\) did Dan forget [CP who\(_1\) studied]?’

b. * [mi]₂ Dan šaxax [CP t₂ [FocP [be-eyzo universita]₁ [TP t₁ lamad t₂]]]?
 who Dan forgot in-which university studied

Thus, it seems that the apparent exception posed by cases such as (64a–b) is the result of the unique properties of wh-adverbials—and specifically, the possibility of such wh-adverbials being base-generated directly in operator position.

7. Conclusion
The paper began by surveying the phenomena exhibited by the Nested Interrogative construction in Hebrew—namely, the superiority pattern, and the distribution of wh-island effects.

I then proposed an analysis in which the feature relevant to wh-movement in Hebrew is located on a head in the left periphery that is lower than C⁰. This was independently motivated by the existence of Sub-Complementizer Topicalization, which is a case of -A-movement in Hebrew that targets a position below the overt complementizer (as shown in section 4). Despite the fact that in this analysis, CP is not the target of overt wh-movement, its single specifier can still be utilized for successive-cyclic wh-movement, and is the only way to move to positions strictly outside of CP.

This proposal was shown to derive both the superiority pattern and the distribution of wh-islandhood effects. It was also shown that the predictions made by this proposal are unaffected by the existence (or lack thereof) of a strong phase at the VP level (section 6.1). Furthermore, the apparently deviant behavior of wh-adverbials with respect to superiority was shown to follow from the assumption that at least certain wh-adverbials can be base-generated in operator position—an assumption that has significant cross-linguistic merit (section 6.2).

References
Bromberger, Sylvain. 1992. *On what we know we don’t know: explanation, theory, linguistics, and how questions shape them*. Chicago, IL: Chicago University Press.
 Robert Freidin, Carlos Otero & Maria-Luisa Zubizarreta, 133–166. Cambridge, MA: MIT
 Press.
 Cambridge, MA: MITWPL.
von Craenenbroeck, Jeroen. 2006. Transitivity failures in the left periphery and foot-driven
 movement operations. In Linguistics in the Netherlands 2006, eds. Jeroen van de Weijer &
 Bettelou Los, 52–64. Amsterdam: John Benjamins.
von Craenenbroeck, Jeroen & Anikó Lipták. 2006. The cross-linguistics
 syntax of sluicing: evidence from Hungarian relatives. Syntax 9:248–274,
 DOI: <10.1111/j.1467-9612.2006.00091.x>.
Horvath, Julia & Tal Siloni. 2002. Against the Little-v Hypothesis. Rivista di Grammatica
Horvath, Julia & Tal Siloni. 2006. The Theta Phase: successive internal V-merger. Ms., Tel-Aviv:
 Tel-Aviv University.
 University.
 Linguistic Inquiry 26:615–634.
 34:506–516, DOI: <10.1162/ling.2003.34.3.506>.
 DOI: <10.1162/002438906775321184>.
 In Derivation and explanation in the Minimalist Program, eds. Samuel David Epstein &
 Gruyter.

Preminger, Omer. 2006. Argument-mapping and extraction.

Richards, Marc. 2007a. Dynamic linearization and the shape of phases. Linguistic Analysis Special Issue: Dynamic Interfaces.

svn revision code: 5658