Intro to Syntax, PART FOUR

Omer Preminger, MIT
EGG 2009 / COST-A33, Poznań

Selection, Arguments \& Adjuncts 2
Introducing selection 3
The lexicon 10
Selection: beyond category 11
Selection: sisterhood and the Projection Principle 14
Adjuncts 17
References 28

Introducing selection

- As we have seen, verbs can take a complement (as in (1))
- But they don't have to (as in (2))
(1)

(2)

Introducing selection

- However, not every verb can freely take or not take a complement
- Compare (3a-b) - essentially, what we saw diagrammed on the previous slide to (4a-b):
(3) a. John has eaten.
b. John has eaten his dinner.
(4) a. * John has devoured.
b. John has devoured his dinner.
- Perhaps more strikingly (for reasons we will discuss shortly), compare (5a-b) with (6a-b):
(5) a. * John has enjoyed.
b. John has enjoyed his victory.
(6) a. John has rejoiced.
b. * John has rejoiced his victory.

Introducing selection

- It seems difficult to reduce all of these facts to meaning
- I don't know what difference in meaning would cause enjoy to demand a DP complement, but rejoice to refuse it

NOTICE

I'm not saying there is no difference in meaning between enjoy and rejoice; there probably is.

- BUT: suppose I were to claim that it is this difference in meaning that is responsible for the difference in their behavior w.r.t. complementation
- Unless I could demonstrate that the exact same meaning difference triggers the exact same behaviors in other pairs of verbs, my claim would be an empty one
- it would just be a fancy way of restating the facts that we have already observed regarding enjoy and rejoice

Introducing selection

- There exist verbs that demand a complement, but will not accept DPs in that role:
(7) a. * John depends.
b. * John depends [DP his sister].
c. John depends [pp on his sister].
(8) a. John requested [CP that Bill pass him the salt].
b. John insisted [CP that Bill pass him the salt].
(9) a. John requested [DP the salt].
b. * John insisted [DP the salt].

Introducing selection

- There are verbs that demand both a DP and a PP:
(10) a. John put [DP the jar] [pp on the table].
b. * John put.
c. * John put [Dp the jar].
d. * John put [pp on the table].
- NOTE: We don't even have room in our current X'-schema for both the DP and the PP!
- since there's only room for one complement to X^{0}
- We'll address this in a couple of classes, if we have time
\triangleright In the meantime, however - since it is not clear how both selected phrases can be complements of the V^{0} put - we will sometimes use the more neutral term

argument:

- both the DP and the PP are arguments of put

Introducing selection

- Even though we've used verbs to demonstrate selectional properties, it's a phenomenon that extends to all syntactic categories - Let's look at some examples with adjectives:
(11) a. John is proud.
b. John is proud [PP of Mary].
c. John is proud [${ }_{C P}$ that Mary won].
(12) a. John is happy.
b. * John is happy [pp of Mary].
c. John is happy [CP that Mary won].
(13) a. * John is fond.
b. John is fond [PP of Mary].
c. * John is fond [CP that Mary won].

Introducing selection

Interim summary:

- We've seen that a head can impose restrictions on whether it will have an argument, and what kind of argument that will be
- These kinds of requirements are generally known as selection
- sometimes referred to as c-selection, where ' c ' is short for categorical
- which is meant to contrast with s-selection, where ' s ' is short for semantic
- which refers to those selectional facts that can be reduced to meaning
Δ the selectional requirements of a particular item/word are idiosyncratic (三specific to that particular item/word)
\Rightarrow there seems to be no way for a speaker to have this linguistic knowledge except listing, for every item/word, what its selectional requirements are
\qquad

The lexicon

- NOTICE: we already need a list, somewhere in the speaker's mental representation, to tell us which words belongs to which syntactic categories
\Rightarrow we might as well list, alongside the syntactic category of each word, what its selectional requirements are
- So we'll have something like this:
(14) proud: A,__(PP | CP)
- this representation means the word proud is an Adjective, and can optionally take either a PP or a CP as its argument
- The complete list of all such information, for every word in the language, is called the lexicon
- and one entry like (14) is called a lexical entry

Selection: beyond category

- We've been speaking of selectional properties in terms of syntactic categories (DP, PP, CP)
- Is that enough?
- For many cases, it appears that the combination of syntactic category + semantic requirements will do the job
- For example, the PP that put requires can be any PP, provided it is semantically compatible with the notion of location
(15) a. John put [DP the book] [PP
$\left\{\begin{array}{l}\text { on the table } \\ \text { under the chair } \\ \text { in the fire } \\ \text { near the sofa } \\ \text { *after the meeting } \\ \neq \text { despite his misgivings } \\ { }^{\text {because of the strike }}\end{array}\right\}$.
- It would be redundant to stipulate this last bit syntactically
- since that's something that semantics needs to know, anyway

Selection: beyond category

- But some heads impose syntactic restrictions on their argument that are more specific than just its category
- We've previously seen the verb depend, for example
- depend not only requires a PP argument, but also imposes severe restrictions on what that P^{0} will be:
(16) The peasants depend on/*from/*by/*near the king.
- This is not reducible to semantics
- one can imagine a metaphor for dependence, where on (the P^{0} corresponding to the spatial relation X is above Y) is relevant
- the point is, one can imagine a dozen other such metaphors
and, as any 2nd language learner will attest, different languages choose different P^{0} 's for the same thing (and thus, perhaps, different metaphors?)

[^0]
Selection: beyond category

- Another example, this time with adjectives:
(17) a. John is fond of/*at/*with/*by/*from Mary.
b. John is angry at/*of/*with/*by/*from Mary.
c. John is happy with/*of/*at/*by/*from Mary.
\Rightarrow heads can select not only the category of their complement, but the actual identity of its head
- NOTICE: the category of a phrase, YP, is uniquely and completely determined by its head, Y^{0}

Selection: sisterhood and the Projection Principle

\Rightarrow the instances of selection we've seen so far can be understood as some head X^{0} imposing restrictions on the head $\left(\mathrm{Y}^{0}\right)$ of its complement (YP)
(18)

$>$ Are there instances of selection that go beyond (18)?

- are there instances, for example, of X^{0} imposing restrictions on the complement/specifier of Y^{0} (when YP is the sister of X^{0})?

Selection: sisterhood and the Projection Principle

- There is, for example, no verb that is like depend, but imposes restrictions on the D^{0} inside P^{0} 's complement, rather than on P^{0} itself:
(19) John schmepends [pp near/on/at/to/by/despite [DP a/*the stipend]].

- This is, of course, anecdotal evidence; but it's also impossible to prove a negative (i.e., the non-existence of something)
\Rightarrow so unless and until we encounter compelling evidence to the contrary, we will assume that selection is indeed restricted to sisterhood
- i.e., heads can impose restrictions (categorical or otherwise) on the heads of their sister(\equiv complement)
(20) Projection Principle:

If a head X^{0} selects for an element α, then α must be the head of the $\alpha \mathrm{P}$ sister of X
EGG 2009 / COST-A33, Poznań

Selection: sisterhood and the Projection Principle

- Consider the following example:
(21) a. It is surprising for a youngster to win the race.
b. It is surprising that a youngster will win the race.
(22) a. * It is surprising for a youngster will win the race.
b. ${ }^{*}$ It is surprising that a youngster to win the race.
- Let's take for granted, for now, that this for is a C^{0}, just like that
\Rightarrow What we see here is that C^{0} imposes selectional restrictions on the tense head, T^{0}
\Rightarrow which, at the very least, fits in with what we've been doing:
- we've been assuming that TP is the complement (三sister) of C^{0}

Adjuncts

(23) a. The dragon devoured [the villagers] (yesterday) (in Omaha).
b. The dragon rejoiced (yesterday) (in Omaha).
c. The dragon put [the peasant] [upon the plate] (yesterday) (in Omaha).
\triangleright It seems that elements like yesterday or in Omaha can be added to (almost?) any VP

- One option is to state this information as part of the lexical entry for each verb o but that seems redundant:
- remember, the whole purpose of the lexicon was to list those facts about each word that had to be memorized
- but if yesterday/in Omaha can be added to every VP, that is not information that needs to be memorized separately for each verb
\Rightarrow in other words, elements like yesterday/in Omaha are not selected by any verb in particular

Adjuncts

(24) DEFINITION:
phrases that aren't selected by particular X^{0} s are called adjuncts

- This could have been the end of the story - in which case, it wouldn't be a particularly interesting story
$>$ However, it turns out that there are interesting syntactic consequences to the argument-vs.-adjunct distinction:
(25) John wrote [a letter] [to Mary] [in the garden] [on Tuesday], ...
a. ... and Bill did so too.
b. ... and Bill did so [on Thursday].
c. ... and Bill did so [at his desk] [on Thursday].
d. * ... and Bill did so [to Susan] [at his desk] [on Thursday].
e. * ... and Bill did so [a note] [to Susan] [at his desk] [on Thursday].
\Rightarrow do so must replace, at the very least, the verb + all of its arguments
- adjuncts, on the other hand, may or may not be included

Adjuncts

Another consequence of the argument-vs.-adjunct distinction:
(26) a student [of physics] [from Brazil]

- It's reasonable to think [from Brazil] is an adjunct:
- it can be added to almost any noun:
(27) the box [from Brazil]
- it doesn't seem to be a specific property of student (as opposed to any other noun) that allows [from Brazil] to appear after it
\Rightarrow in other words, [from Brazil] is not selected by student
- compare this with [of physics]:
(28) * the box [of physics]
\Rightarrow [of physics] is selected by student
- Now consider (26), compared to (29):
(29) * a student [from Brazil] [of physics]

Adjuncts

\Rightarrow adjuncts cannot be ordered before arguments

> Unlike many of the other properties we've been talking about, there are many languages for which this is not true; if we'll have time, we'll talk a little bit about what the relevant difference is between these languages and English.

- Compare this with (30a-b):
(30) a. the student [from Brazil] [with the short hair]
b. the student [with the short hair] [from Brazil]
\Rightarrow two adjuncts can be reordered w.r.t. each other
- How might we relate these two facts?
(i) do so must replace, at the very least, the verb + all of its arguments
- adjuncts, on the other hand, may or may not be included
(ii) adjuncts cannot be ordered before arguments
- while adjuncts can be reordered amongst themselves

Adjuncts

- Suppose adjuncts are Merged as sisters to the maximal projection (XP):
(31)

- RECALL: complements are Merged as sisters to the head
\Rightarrow by the time the adjunct is Merged, the complement is already there
\Rightarrow as a result, the adjunct will be farther out from the head (compared to the complement)
\Rightarrow if both the complement and the adjunct are to the right of the head, then the adjunct must follow the complement

Adjuncts

- PREDICTION: an adjunct can precede the complement, so long as it also precedes the head
- if we introduce the adjunct via $\operatorname{Merge}(<$ adjunct>, XP), rather than $\operatorname{Merge}(\mathrm{XP}$, <adjunct>)
\Rightarrow this prediction is borne out:
(32)

EGG 2009 / COST-A33, Poznań

Adjuncts

- In fact, both the adjunct and the complement can appear pre-nominally (i.e., before the noun)
- in that case, however, the adjunct must precede the complement:
(33) a. a Brazilian physics student
b. * a physics Brazilian student
- NOTICE:
- our structurally-based characterization of adjunct positions ("farther away from the head than complements") gets (33a-b) right
- whereas a linearly-based characterization of adjunct positions ("following/to the right of complements") does not

Adjuncts

- How about the label of the resulting constituent (when an XP and an adjunct Merge)?
- REMINDER: our original motivation for the existence of syntactic categories was distributional
(i.e., where a set of constituents can and can't appear)
- it's pretty clear that (34b) or (34c) can appear in whatever syntactic environments (34a) can appear in:
(34) a. [NP student of physics]
b. [? [NP student of physics] [pp from Brazil]]
c. [? [AP Brazilian] [NP student of physics]]
\Rightarrow it stands to reason that the category of $(34 b-c)$ is the same as the category of $(34 a)-$ namely, NP:
(35) a. [NP [NP student of physics] [pp from Brazil]]
b. [NP [AP Brazilian] [NP student of physics]]

EGG 2009 / COST-A33, Poznań

Adjuncts

- If so, then the addition of an adjunct - unlike the addition of a complement - does not change the category of a constituent
- e.g., the result of Merging an adjunct to an NP is another NP
\Rightarrow PREDICTION: the output of one adjunction(\equiv Merge of an adjunct) should be able to serve as input for another adjunction
- We have already seen, in fact, that this prediction is borne out:
(36)

Adjuncts

- This also captures the fact that, modulo semantic/pragmatic constraints, adjuncts can Merge in any order
- because the adjunct always Merges to an XP (e.g., an NP, as in (36))
- regardless of whether it is the first adjunct, the second adjunct, etc.
(37)

student of physics
EGG 2009 / COST-A33, Poznań

Adjuncts

- Finally, consider the do so facts:
- we saw that do so must replace at least the verb + all of its arguments
- adjuncts, on the other hand, may or may not be included
(38)

$>$ do so can replace VP nodes, and only them!
\Rightarrow our hypothesis about how adjuncts are Merged into the structure gives rise to a very elegant characterization of do so's behavior

EGG 2009 / COST-A33, Poznań

References

References

Abels, Klaus. 2008. Introduction to Syntax. Unpublished class materials, Debrecen: EGG.
Richards, Norvin. 2008. Introduction to Syntax. Unpublished class materials, Cambridge, MA: MIT. Siloni, Tal. 2003. Introduction to Syntax. Unpublished class materials, Tel-Aviv: Tel-Aviv University.

This is sun-revision 1082.
EGG 2009 / COST-A33, Poznań

[^0]: EGG 2009 / COST-A33, Poznań

