General stuff

- class in “parts”
- handouts
- English as the object language
- English as the teaching language
- interruptions, questions/comments/contributions!
 - there’s no part of syntax (or even linguistics in general) that you’re supposed to “already know” before this course
 - if you don’t understand something — ask!
- the why

Generative Linguistics: An Absurdly Brief Overview

What is it all about? Some examples

- We possess tacit knowledge about language
 - knowledge that we might not even know we have

 (1) a. Peter forgets to lock the door every time he leaves the house.
 b. He forgets to lock the door every time Peter leaves the house.

 - he and Peter can co-refer in (1a), but not in (1b)
 - co-refer := refer to the same individual

- Is this about precedence (“what comes first”)?

 (2) a. Every time Peter leaves the house he forgets to lock the door.
 b. Every time he leaves the house Peter forgets to lock the door.

 - he and Peter can co-refer in both (2a) and (2b)
 - precedence cannot explain why (1b) is bad
What is it all about? Some examples

- Another example:

 (3) a. The judges chose a picture of Stewie.
 b. A picture of Stewie won first prize.

 (4) a. Who did the judges choose a picture of?
 b. * Who did a picture of win first prize?

 [the asterisk (*) means that the sentence is judged as unacceptable by native speakers of the language]

 ➢ Is this about the linear position of Stewie/who?
 o in other words, could the reason (4b) is bad be something like “you can only ask about Stewie/who if it is at the end of the sentence”?

(5) a. The judges chose a picture of Stewie to represent the school.
 b. Who did the judges choose a picture of ___ to represent the school?

 ⇒ it is not the linear position of Stewie/who that makes (4b) bad

What is it all about? Some examples

- Yet another example:

(6) Peter wants to keep the car in the garage.

- This sentence has (at least) two possible meanings:

 (i) Peter wants the car to continue to be in the garage.
 (ii) There is a car that Peter wants to retain ownership of; and that car happens to be in the garage.

- Now consider (7):

(7) Which car does Peter want to keep in the garage?

 o the meaning of (7) can be based on (i), but not on (ii)

 - i.e., (7) cannot mean Which car is the car that Peter wants to retain ownership of, and happens to be in the garage?

 - even though that is a completely coherent meaning, logically speaking
The learnability problem

- We've seen several examples that demonstrate:
 - we have certain kinds of knowledge about language that we're not necessarily conscious of
 - this knowledge is, at least in some cases, fairly intricate
 - resisting what might be considered “naive” analyses

> Here's the kicker:
 - Nobody's parents/teachers/TV shows them a sentence like (4b)...

(4) b. * Who did a picture of win first prize?

... and told them “oh by the way, don’t ever do this; it’s not allowed”

but note that:

1. there’s no phonological problem in uttering (4b)
2. we can perfectly well understand what (4b) **would** mean, if it were grammatical

⇒ so how do speakers come to have this knowledge?

- Possible explanation:
 - Speakers know that these sentences are bad because they never encounter them in the course of their natural exposure to language

 it’s reasonable to claim that a sentence like (4b) is never encountered; as for (1b)/(7), we could say speakers never encounter them with the intended meaning being the one that is, in fact, impossible; though one might wonder about the relationship between **intended meaning** and **understood meaning**...

> BUT...

The learnability problem

- Similarly, nobody shows children sentences like (1b) and (7)...

(1) b. He forgets to lock the door every time Peter leaves the house.

(7) Which car does Peter want to keep in the garage?

... and says “here's what a sentence like this **cannot** mean”

⇒ SO HOW DO SPEAKERS COME TO HAVE THIS KNOWLEDGE?

- Possible explanation:
 - Speakers know that these sentences are bad because they never encounter them in the course of their natural exposure to language
The learnability problem

(8) A three-headed giraffe would make a formidable prime minister.

- I bet none of you have ever encountered (8), either
 - but you all know that (8) is a well-formed sentence in English
- speakers know, even when confronted with a sentence for the first time, whether it is well-formed or not
 - and what meanings it can and cannot have

⇒ SO AGAIN, HOW DO SPEAKERS COME TO HAVE THIS KNOWLEDGE?

- This is an especially vexing question, given certain properties of the language acquisition process
 - This isn’t a language acquisition course
 - Bart Hollebrandse is teaching one right here @ EGG!
 - but it’s worthwhile to consider language acquisition, at this juncture

An interlude on language acquisition

DISCLAIMER: Anything and everything I say here is superseded by what Bart Hollebrandse tells you!

Some properties of the language acquisition process:

I. Children acquire language blindingly fast, and at a very early age

A MENTAL EXERCISE:

- consider the degree of difficulty involved in learning a new language (right now, as adults)
- and imagine what might be a comparably difficult topic to learn, for example, in mathematics (multi-variate integration...?)
- how outlandish is it to imagine a 5-year-old who has mastered a mathematical task of this sort?
- yet almost all 5-year-olds have mastered at least one language
 - at a level that would make any foreign language learner proud
An interlude on language acquisition

II. There is a critical period, age-wise, for language acquisition
(more or less until puberty)

- if the child receives no significant linguistic input by a certain age, she or he will be severely impaired in their linguistic capabilities
- this mirrors the state of affairs with other systems that are biological
 - e.g., the visual system and exposure to light

III. The so-called “poverty of the stimuli” properties

III.a. The child receives little-to-no negative evidence

- as mentioned earlier: situations where a child is presented with a sentence that is unacceptable (e.g., (4b)) — and told “this is impossible”/“don’t do this” — are, at best, exceedingly rare

\begin{align*}
(4) \quad & \text{b. * Who did a picture of win first prize?}
\end{align*}

EGG 2009 / COST-A33, Poznań

III.b. Moreover, even when systematic teaching is provided, children often ignore it

- especially if they are not at the proper stage of acquisition to absorb this knowledge

\begin{align*}
(9) & \text{CHIL}: \text{ Want other one spoon, Daddy.} \\
& \text{FATH}: \text{ You mean, you want the other spoon.} \\
& \text{CHIL}: \text{ Yes, I want other one spoon, please Daddy.} \\
& \text{FATH}: \text{ Can you say “the other spoon”?} \\
& \text{CHIL}: \text{ Other... one... spoon.} \\
& \text{FATH}: \text{ Say “other”.} \\
& \text{CHIL}: \text{ Other.} \\
& \text{FATH}: \text{ “Spoon”.} \\
& \text{CHIL}: \text{ Spoon.} \\
& \text{FATH}: \text{ “Other spoon”.} \\
& \text{CHIL}: \text{ Other... spoon. Now give the other one spoon?}
\end{align*}

EGG 2009 / COST-A33, Poznań

III.c. The data to which the child is exposed contains production errors (“slips of the tongue”), aborted utterances, etc.

- Chomsky (1980) compares this to trying to learn the rules of chess by only observing a game, in which both players occasionally (albeit rarely) make moves that violate the rules
 - without necessarily indicating that a violation has occurred
- and of course, language is a much more complex system than the set of rules of chess
 - the rules of chess would probably fit on a single sheet of paper
 - if that was true for language, linguistics would be pretty boring!
An interlude on language acquisition

IV. Children acquiring different languages have been shown to go through certain uniform stages

- regardless of which language it is they are acquiring

V. Despite what seem to be pretty vast differences between different languages, children “figure out” the properties of the particular language they are acquiring

- at the same time, infants of course have the capacity to acquire any human language
 - if somebody switched 2 infants, one living in an English-speaking environment, and the other living in a Russian-speaking one —
 - each infant would, of course, perfectly master the “other” language, to which they were actually exposed

What we will and won’t cover: Some important distinctions

➢ Again, this isn’t a course about language acquisition
 ⇒ we won’t be focusing, for the most part, on the question of how speakers come to have this (tacit) knowledge about language
 - but rather, simply investigating what that knowledge is

• BUT: as you can see, the acquisition question is a very interesting one
 - Moreover, it’s a very important criterion for evaluating theories of linguistic knowledge (so-called “explanatory adequacy”):
 - our theory of the adult speaker’s linguistic knowledge should make it possible for a child to arrive at that knowledge
 - based only on the kind of data available during acquisition

➢ This is one example of a larger issue: syntax does not exist in a vacuum
 - it interacts with other modules of language
 - and language, in turn, interacts with other modules of cognition
What we will and won’t cover: syntax vs. semantics

⇒ Some important distinctions to keep in mind:

I. syntax vs. semantics

(10) Colorless green ideas sleep furiously.
(11) Furiously sleep ideas green colorless.

[Chomsky 1957]

• Neither (10) nor (11) is a felicitous English sentence; but:
 o (10) is just meaningless
 o (11), in addition to being meaningless, has other problems...

➢ We will be concerned with the kind of problems that plague (11), but not (10)
 o what goes wrong with (10) — as well as with (12a–b) — falls outside the domain of syntax

(12) a. The square root of Milly’s desk drinks humanity.
 b. Being a theorem frightens consternation.

What we will and won’t cover: descriptive vs. prescriptive

[II. descriptive vs. prescriptive

• The term “grammar” is sometimes used to refer to something completely different
 o namely, how some people think you “ought” to speak, or what’s acceptable in the eyes of your 5th grade English teacher

• So, for example, English speakers are told not to say — or at least, not to write — sentences like (13), which end in a preposition:

(13) What are you talking about?

➢ But every English speaker would instantly recognize (13) as part of their native language

• we are interested in the descriptive study of the knowledge that speakers actually have, not what others might try to impose upon them

⇒ these prescriptive rules are not part of what we’ll be studying
What we will and won’t cover: competence vs. performance

III. competence vs. performance

• When we are speaking, all kinds of things (linguistic and non-linguistic) might happen, that affect what we say:

(14) This is the … speaker is then interrupted by loud sound in other room, or … speaker then forgets what they wanted to say, or … speaker then accidentally inhales a fly, etc. — and the sentence is never completed.

◦ at this point, we could (in principle) declare that This is the must be part of the English language
 (maybe with a footnote stating that it’s only grammatical if you inhale a fly after saying it)
 – and that our grammatical theory must account for it
 · since, after all, a native speaker has uttered it

⇒ we will make a distinction between —

| competence: | what the grammar would produce in a perfect world |
| performance: | actual linguistic behavior — the result of grammar interacting with interruptions, limited memory, fatigue, inhaled flies, etc. |
What we will and won’t cover: competence vs. performance

- Another such example has to do with the length of sentences and noun-phrases, and/or the depth of embedding:

(15) a. John likes apples.
 b. Mary hopes that John likes apples.
 c. Bill knows that Mary hopes that John likes apples.
 d. Sue doubts that Bill knows that Mary hopes that John likes apples.

(16) a. John’s friend
 b. John’s mother’s friend
 c. John’s mother’s sister’s friend
 d. John’s mother’s sister’s fiancé’s friend
 e. John’s mother’s sister’s fiancé’s aunt’s friend

⇒ But it’s not at all clear that we want our theory of grammar to account for things like the life-expectancy of the speakers

➢ Again, it seems that in terms of competence (i.e., “in a perfect world”), there is no limit on the length of a sentence/noun-phrase
 o the fact that, in reality, there probably is an upper bound — after which you lose concentration, etc. — is a fact about performance
Other (possibly immaterial) distinctions

- Since we are trying to investigate the *competence* of speakers, but have access only to *performance*, this investigation is imperfect
 - this obviously includes asking people for grammaticality judgments
- But is this a particular property of some kinds of scientific investigation, and not others?
 - Imagine an astronomer/astrophysicist looking through a telescope
 - Obviously, this person has indirect access to what is really the object of study (stars, planets, black holes, etc.)
 - Moreover, this access can be further affected by, e.g., the person's contact-lens prescription being outdated, or their eyes being tired
- Would you say that observations made through a telescope do not constitute *external evidence* for astronomy/astrophysics?

EGG 2009 / COST-A33, Poznań

Other (possibly immaterial) distinctions

- In what sense, then, do psycholinguistic/neurolinguistic/acquisition data constitute *external evidence*?
 - what are they *external* to?
 - and what, exactly, is this supposed to contrast with?
- All of these areas of research, just like theoretical linguistics, have their own kinds of confounds
 - and these confounds are not any more or less severe, a priori, than *performance* effects are to *competence*
- so the only sense in which these are *external* is that they are (perhaps) *external* to theoretical linguistics (though they probably shouldn't be . . .)
 - in which case, theoretical linguistics is also *external evidence*
 - *external* to neurolinguistics/psycholinguistics, that is
How are words organized into sentences?

HYPOTHESIS #1

- A sentence is simply a collection of words

... and we’re smart enough to figure out, from the meanings of those individual words, what their combination means.

(17) Stewie mocked Brian about his unfinished novel today. ≡

{Stewie, mocked, Brian, about, his, unfinished, novel, today}

- **Problem**: order seems to matter for grammaticality

 (reminder: the asterisk (*) means that the sentence is judged as unacceptable)

(18) * Stewie novel about today his mocked Brian unfinished. ≠

{Stewie, novel, about, today, his, mocked, Brian, unfinished} = (17)

⇒ if our goal is to account for the speakers’ linguistic knowledge, **HYPOTHESIS #1** is insufficient

- since speakers’ knowledge includes the fact that (18) doesn’t have the same status as (17)

How are words organized into sentences?

- **Another problem**: order seems to matter for meaning

(19) Stewie mocked Brian about his unfinished novel today. ≠

Brian mocked Stewie about his unfinished novel today.

But: {Stewie, mocked, Brian, about, his, unfinished, novel, today} =

{Brian, mocked, Stewie, about, his, unfinished, novel, today}

- **HYPOTHESIS #1** predicts that the two utterances in (19) would be linguistically equivalent

 ➢ but they are not
How are words organized into sentences?

HYPOTHESIS #2
a sentence is simply an ordered collection of words

(20) “Stewie mocked Brian.” \(\cong (\text{Stewie}_1, \text{mocked}_2, \text{Brian}_3)\)

(21) “Brian mocked Stewie.” \(\cong (\text{Brian}_1, \text{mocked}_2, \text{Stewie}_3)\)

\[\Rightarrow\] this representation captures the fact that when we change (20) to (21), we change something rather profound about the utterance itself

• it is also able to distinguish (17) from (18):

(17) “Stewie mocked Brian about his unfinished novel today.”
\[\cong (\text{Stewie}_1, \text{mocked}_2, \text{Brian}_3, \text{about}_4, \text{his}_5, \text{unfinished}_6, \text{novel}_7, \text{today}_8)\]

\[\not\cong\]

(18) * “Stewie novel about today his mocked Brian unfinished.”
\[\cong (\text{Stewie}_1, \text{novel}_2, \text{about}_3, \text{today}_4, \text{his}_5, \text{mocked}_6, \text{Brian}_7, \text{unfinished}_8)\]

Beyond linear order

• Is there any reason to go beyond HYPOTHESIS #2?
 - HYPOTHESIS #2 tells us that (17) is different from (18)... (which it is)

(17) Stewie mocked Brian about his unfinished novel today.

(18) * Stewie novel about today his mocked Brian unfinished.

 – but it doesn’t tell us why (17) is good and (18) is bad
 - as opposed to, say, (18) being good and (17) being bad

 ➢ we will come back to this issue a bit later

• but: there are other reasons why HYPOTHESIS #2 is insufficient —

(17) Stewie mocked Brian about his unfinished novel today.
\[\not\cong\]

Stewie mocked Brian about his unfinished novel today.
\[\not\cong\]

\[\langle \text{Stewie}_1, \text{mocked}_2, \text{Brian}_3, \text{about}_4, \text{his}_5, \text{unfinished}_6, \text{novel}_7, \text{today}_8 \rangle\]

 o an intuition: not every substring of (17) is equal

 – A string like his unfinished novel forms a unit,
 in a way that Brian about his doesn’t
Constituency: from intuition to evidence

➢ This intuition can be fleshed-out empirically:

(17) Stewie mocked Brian about his unfinished novel today.
 Stewie mocked [Brian about his unfinished novel] today.
 Stewie mocked [Brian about his unfinished novel] today.

I. SUBSTITUTION
II. MOVEMENT
III. FRAGMENT-ANSWER
 (and there are more…)

(22) Stewie mocked Brian about it today.
(23) * Stewie mocked him/it unfinished novel today.

➢ crucially, almost all speakers judge (24) to be better than (25)

[the question-mark (?) means that the sentence is judged as marginally acceptable by]

[native speakers of the language]
Constituency: from intuition to evidence

➢ This intuition can be fleshed-out empirically:

(17) Stewie mocked Brian about his unfinished novel today.
 Stewie mocked Brian about his unfinished novel today.
 Stewie mocked Brian about his unfinished novel today.

I. SUBSTITUTION
II. MOVEMENT
III. FRAGMENT-ANSWER
 (and there are more...)

(26) A: What did Stewie mock Brian about today?
 B: His unfinished novel.

(27) A: ...?
 * B: Brian about his.

EGG 2009 / COST-A33, Poznań

Constituency: from intuition to evidence

➢ This intuition can be fleshed-out empirically:

(17) Stewie mocked Brian about his unfinished novel today.

I. SUBSTITUTION
II. MOVEMENT
III. FRAGMENT-ANSWER
 (and there are more...)

• These diagnostics distinguish some strings of words from others...

... and each one seems, for the most part, to pick out the same strings
➢ the same strings about which we had the intuition that they constitute cohesive units

EGG 2009 / COST-A33, Poznań

Constituency: from intuition to evidence

• We now have evidence that the grammar treats some sequences of words differently than others
 ◦ and that some sequences of words form cohesive units
➢ we will call these units constituents

• How can a representation of sentences as a flat, ordered set of words (HYPOTHESIS #2) capture the existence of constituents?

(17) Stewie mocked Brian about his unfinished novel today.

\[
\langle \text{Stewie}_1, \text{mocked}_2, \text{Brian}_3, \text{about}_4, \text{his}_5, \text{unfinished}_6, \text{novel}_7, \text{today}_8 \rangle
\]

◦ after all, Brian about his are three consecutive words in the ordered set, just like his unfinished novel

⇒ we need a more articulated representation of sentence structure

EGG 2009 / COST-A33, Poznań
How constituents are organized

- What representation should we need to replace **HYPOTHESIS #2** with?
 - we need to explore what strings of words do and don’t form constituents in various sentences
 - It turns out that when we apply the diagnostics we’ve seen (and others), we find patterns like this:

 (28) John read two very interesting books about linguistics last week.
 John read two very interesting books about linguistics last week.

 (each underline represents a constituent)

 - **observation**: if a constituent α in (28) overlaps with a constituent β, then α and β stand in a containment relation
 - i.e., we don’t find patterns of this sort: *
 word1 word2 word3
 - in other words, constituents are always nested (in their entirety) within other constituents

A good way to represent such a nested structure is with a *tree diagram*

(28) John read two very interesting books about linguistics last week.

(29)

John

read

two

very interesting books

about linguistics

last week
How constituents are organized

- the tree in (29) has another interesting property
 - every node has exactly two daughters
 - each sub-tree looks like, e.g., (30a)
 - and not, e.g., like (30b)

(30) a. \[\begin{array}{c}
 \delta \\
 \alpha \\
 \beta
\end{array} \quad (\alpha \text{ and } \beta \text{ are daughters of } \delta) \\
\]
b. \[\begin{array}{c}
 \delta \\
 \alpha \\
 \beta \\
 \gamma
\end{array} \quad (\alpha, \beta \text{ and } \gamma \text{ are daughters of } \delta) \\
\]

⇒ the entire tree can be constructed by successive application of a basic, building-block operation:

(31) \[\text{Merge}(\alpha, \beta) = \begin{array}{c}
 \alpha \\
 \beta
\end{array}\]

(32) \[\text{Merge}(\text{about, linguistics}) = \begin{array}{c}
 \text{about} \\
 \text{linguistics}
\end{array}\]

And so forth...
References

This is svn-revision 1082.