Agreement and its failures
PART TWO
OMER PREMINGER (omerp@mit.edu)

TWO ACCOUNTS OF \(\varphi \)-AGREEMENT

1. \textit{Agree} (Chomsky 2000, 2001)

 \begin{itemize}
 \item Let \(P \) be a probe (i.e., the agreement-morpheme), and let \(G \) be the corresponding goal (i.e., the full noun-phrase)
 \item \(G \) bears the semantically “contentful” versions of the relevant \(\varphi \)-features (e.g., \textit{number}, \textit{person}, \textit{gender}, etc.)
 \begin{itemize}
 \item this is called \textit{interpretable} — as in “\textit{can} be \textit{interpreted} by the semantics”
 \end{itemize}
 \item the same features, when expressed on \(P \), make no semantic contribution
 \begin{itemize}
 \item this is called \textit{uninterpretable} — as in “\textit{cannot} be \textit{interpreted} by the semantics”
 \end{itemize}
 \end{itemize}

 (1) \textbf{CONDITIONS ON \textit{Agree}} (repeated from PART ONE)

d. a probe \(P \) can enter into a feature-valuation relation with a goal \(G \) iff:

 (i) \textit{G} is within \(P \)'s domain

 a. \textit{G} is c-commanded by \(P \)
 b. \(P \) and \(G \) are not separated by a locality boundary (e.g., a phase)

 (ii) there is no other suitable goal \(G' \) within \(P \)'s domain, such that \(G' \) asymmetrically c-commands \(G \)

 \begin{itemize}
 \item When an \textit{Agree} relation is established, the uninterpretable features on \(P \) are deleted, and replaced with the interpretable features found on \(G \) (along with their values)
 \begin{itemize}
 \item this is sometimes referred to as \textit{feature-checking}
 \end{itemize}
 \item \textit{uninterpretable features} — if they are not checked by the time the derivation culminates — cause the derivation to “crash”
 \begin{itemize}
 \item resulting in ungrammaticality
 \end{itemize}
 \end{itemize}

 (2) \textbf{THE ACTIVITY CONDITION} (Chomsky 2001)

 a goal \(G \) is accessible for \textit{Agree} iff \(G \) has at least one uninterpretable feature

 \Rightarrow \textbf{QUESTION}: what \textit{uninterpretable} features do noun-phrases have?
Chomsky’s answer: Case
- noun-phrases are “born” with uninterpretable Case-features
- when a probe P checks its uninterpretable ϕ-features using the interpretable counterparts on a noun-phrase G, the uninterpretable Case-feature on G gets (magically) checked
 - receiving different values, depending on P’s identity:
 \[
 P = T^0 \implies \text{Case} = \text{NOMINATIVE} \\
 P = v^* \implies \text{Case} = \text{ACCUSATIVE} \\
 \vdots \\
 \vdots
 \]
- in this framework, being a “suitable goal” for ϕ-agreement (as in (1)) amounts to having an uninterpretable Case-feature
 (though, without an independent uninterpretable-Case-feature-detector, this of course amounts to a stipulation)

2. ϕ-agreement as a post-syntactic operation (Bobaljik 2008)

Observation:

One cannot hope to correctly characterize the relation between Case and ϕ-agreement by looking only at languages that lack quirky Case
- because in those languages, ϕ-agreement and (NOMINATIVE/ABSOLUTIVE) Case never diverge, in the first place

2.1. Quirky Case

(3) **“QUIRKY” SUBJECTS**

subjects that bears morphological Case other than NOMINATIVE, but otherwise behave as any other subject would

(4) a. Jóni líkuðu þessir sokkar

Jon.DAT like.pl these socks.NOM
‘Jon likes these socks.’

[Ónsson 1996:143]

b. þeim var hjálpað

them.DAT was.sg helped
‘They were helped.’

[Zaenen et al. 1985:97]

- Crucially, it is the DATIVE element in (4a–b) that passes all the tests for subjecthood

(Sigurðsson 1989, Zaenen et al. 1985, others)
 - control, binding, constituency, word-order with auxiliary/participle, etc.
- These quirky subjects are licensed by particular lexical items:
 - it is something about líkuðu (‘like.pl’) that causes its subject to be DATIVE (rather than NOMINATIVE)
 - it is something about hjálpað (‘helped’) that causes the subject of its passive — i.e., its underlying object — to be DATIVE (rather than NOMINATIVE)

1This definition only works for NOMINATIVE-ACCUSATIVE languages, of course.
2Crucially, this does not include ϕ-agreement; see below.
compare (4a), repeated here, with (5):

(4) a. Jóni líkuðu þessir sokkar
–> Jon.DAT like.pl these socks.NOM
‘Jon likes these socks.’

(5) Drengurinn elskar stúlkuna.
‘The boy love the girl.’

[Thráinsson 2007(7.1b’)]

2.2. Ergativity

(6) a. NOMINATIVE-ACCUSATIVE SYSTEM:

transitive: A NOM O ACC

intransitive: S NOM

b. ERGATIVE-ABSOLUTIVE SYSTEM:

transitive: A ERG O ABS

intransitive: S ABS

(7) a. He hit him.

b. {He *Him} danced.

(8) a. Ehiztari-ak otso-a harrapatu d- φ- u- φ
‘The hunter has caught a/the wolf.’

b. Otso{-ak} etorri d- a- φ.
‘The wolf has arrived.’

[Laka 2005]

• another way to think about this, is in terms of which Case-marking is dependent on which:
 - in a NOMINATIVE-ACCUSATIVE language: ♦ ACCUSATIVE ⇒ ♦ NOMINATIVE
 - in a ERGATIVE-ABSOLUTIVE language: ♦ ERGATIVE ⇒ ♦ ABSOLUTIVE

2.3. m-Case

(9) DISJUNCTIVE CASE HIERARCHY (Marantz 1991)

lexical/inherent Case ≫ dependent Case ≫ unmarked Case
(10) a. Sigurður elskar Jónínu.
 ‘Sigurd loves Jonina.’ [Thráinsson 2007:202]
 Sigurður.NOM loves Jónínu.ACC

b. Mér líkar mjólkinn.
 ‘I like milk.’ [Thráinsson 2007:186]
 me.DAT likes milk-the.NOM

• Case-assignment sequence:

<table>
<thead>
<tr>
<th></th>
<th>in (10a)</th>
<th>in (10b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lexical/inherent Case</td>
<td>—</td>
<td>SUBJ DAT, idiosyncratically assigned by líkar ‘likes’</td>
</tr>
<tr>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dependent Case</td>
<td>OBJ assigned to the lower of two still-unmarked noun-phrases; see below</td>
<td>—</td>
</tr>
<tr>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unmarked Case</td>
<td>SUBJ</td>
<td>OBJ</td>
</tr>
<tr>
<td>(assigned to remaining unmarked noun-phrases)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• in this framework, ERG-ABS languages differ from NOM-ACC languages only in the following setting:
 ◦ **NOM-ACC:** dependent Case assigned to the lower of two non-lexically/inherently Case-marked noun-phrases
 ◦ **ERG-ABS:** dependent Case assigned to the higher of two non-lexically/inherently Case-marked noun-phrases

2.4. Bobaljik’s ϕ-agreement rule

(11) The controller of agreement on the finite verbal complex (Infl+V) is the highest accessible NP in the domain of Infl V. [Bobaljik 2008:(3)]

Explanation (esp. of underlined terms):

- **highest:** c-command
- **accessible:** a language-specific, right-anchored subset of the disjunctive Case hierarchy (see (12), below)

(12) lexical/inherent Case ≫ dependent Case ≫ unmarked Case
in other words, we could identify three types of languages, as far as *accessibility* is concerned:

- *type-1*: only noun-phrases with *unmarked* Case are accessible
- *type-2*: noun-phrases with *unmarked* or *dependent* Case are accessible
- *type-3*: noun-phrases with *unmarked*, *dependent* or *lexical/inherent* Case are accessible

This means that there are also Case-accessibility combinations that should be unattested:

- in NOMINATIVE-ACCUSATIVE languages:
 - ✓ possible sets of accessible Case-markings:
 - [NOM], [NOM, ACC], [NOM, ACC, DAT]
 - ❌ impossible sets of accessible Case-markings:
 - [ACC], [DAT], [ACC, DAT], [NOM, DAT]
- in ERGATIVE-ABSOLUTIVE languages:
 - ✓ possible sets of accessible Case-markings:
 - [ABS], [ABS, ERG], [ABS, ERG, DAT]
 - ❌ impossible sets of accessible Case-markings:
 - [ERG], [DAT], [ERG, DAT], [ABS, DAT]

NOTE: these sets of accessible Case-markings indicate the set of noun-phrases that are suitable targets, when a single (Infl+V) probes for a goal

- i.e., when the set includes multiple Case-markings, then multiple kinds of noun-phrases could potentially serve as goals for the same (Infl+V) complex
 - and the choice between them will be based on which one is present, and on *highest* and *domain*

- Example: Nepali is a “*type-2*” language, as far as *accessibility* is concerned
 - i.e., both *unmarked* and *dependent* Cases are accessible for φ-agreement

(13) a. ma [yas pasal-ma] patrika kin-ch-u
 1sg.NOM DEM.OBL store-LOC newspaper.NOM buy-NONPAST-1sg
 ‘I buy the newspaper in this store.’

b. maile [yas pasal-ma] patrika
 1sg.ERG DEM.OBL store-LOC newspaper.NOM
 kin-/$'\text{kin-yo}$ buy-PAST.1sg/*buy-PAST.3sg.MASC
 ‘I bought the newspaper in this store.’

(14) malai timi man par-ch-au/*par-ch-u
 1sg.DAT 2MASC.HON.NOM liking occur-NONPAST-2MASC.HON/*occur-NONPAST-1sg
 ‘I like you.’

 Bickel and Yadava 2000:348
• **domain**: within a finite clause
 ○ **BUT**: datives will have to trigger their own domain boundary
 (in addition to those domain-boundaries introduced by finite clauses)
 ➢ otherwise intervention cannot be modeled, in this system

2.5. The typological payoff

• a typological gap:

 ✓ NOM-ACC Case-marking system, w/NOM-ACC φ-agreement system
 ✓ ABS-ERG Case-marking system, w/ABS-ERG φ-agreement system
 ✓ ABS-ERG Case-marking system, w/NOM-ACC φ-agreement system
 ✓ NOM-ACC Case-marking system, w/ABS-ERG φ-agreement system

 ➢ the gap, derived:

 | accessible Case-markings | unmarked only | unmarked or dependent |
 |--------------------------|--------------|----------------------|
 | NOM-ACC Case | NOM | NOM-ACC + highest = NOM |
 | ERG-ABS Case | ABS | ERG-ABS + highest = SUBJ(≡"NOM") |

References

