Introduction

The premise of this talk is very simple:
- Suppose we have a language that has overt case-marking and/or overt ϕ-feature agreement
- The question I am interested in is:

> What happens to case and/or agreement in clauses that are just big enough to contain AspP but not TP?

Just to go ahead and spoil the answer…:
- case survives
- agreement may or may not survive
 - depending on whether unvalued ϕ-features are hosted on T^0, or lower in the clause

This supports a view whereby:
- agreement is head-driven
 - and the locus of unvalued ϕ-features varies from language to language
 - leading to variation in whether or not agreement “survives”
 - you get a “finite” case system as soon as you have more than one noun phrase contained in a structure that is unambiguously ‘clausal’
 - and it looks like AspP plays a pivotal role in determining when, exactly, a piece of structure counts as ‘clausal’

A methodological note:
- We will want to distinguish, e.g., not having T^0 on the one hand —
 - from having a T^0 that is nonfinite/defective/weak/etc. on the other
 - We will therefore want to rely primarily on structural (rather than semantic) diagnostics in determining clause size.

2. Chukchi: case without agreement in ‘mid-size’ clauses

- Finite clauses in Chukchi exhibit both overt case (ERG-ABS alignment) and overt ϕ-agreement (a combination of verbal prefixes and suffixes)

(1) a. \[yam-nan \ yot \ \ t\-\?u\-yot \]
\[\text{l-ERG} \ you.sg(ABS) \ 1sg.SUBJ-see-2sg.OBJ \]
‘I saw you.’

b. \[gyo-nan \ yom \ ne-\?u\-yom \]
\[\text{3pl-ERG} \ I(ABS) \ 3sg.SUBJ-see-1sg.OBJ \]
‘They saw me.’

c. \[yam \ t\-kay\-\?attat-\?ak \]
\[\text{I.(ABS)} \ 1sg.SUBJ-run-1sg.OBJ \]
‘I ran.’

[Skorik 1977:19–45]

NB: While it may seem that tense/aspect are not exponed in these examples, the forms of the agreement affixes are, in fact, TAM-specific
- in this case, encoding “past perfective”

1I’m borrowing this term from Johnson & Tomioka (1998). I’ll return it when I’m done.
What’s important for our current purposes is the existence of a type of gerund in Chukchi, in which aspect is represented but tense is not:

(2) a. aywe [ga-tayk- ma kupren] y’taruy-peniyiwt- g?e yesterday GA-make-MA net(ABS) extremely 1sg-exhausted-AOR
 ‘I got very tired yesterday, making a net.’

 ‘As I shot (at it), the duck dived.’

c. [aŋponač- e tayk- ma orwor] ńingeny ən-ök qaca old.man-ERG make-MA sled(ABS) boy(ABS) 3sg-LOC near
 na-twecatwa-qen 3sg.pres-stand-3sg.pres
 ‘While the old man was making a sled, the boy was standing next to him.’
 [Spencer 1999; Maria Polinsky, p.c.]

◦ the suffix -MA is gerundive; and when combined with the prefix GA-, it yields what is referred to as a gerund of simultaneity (GA-…. -MA)

Some initial observations:

• Case and agreement are dissociable
 ⇒ case is not a “side effect” of / the “other side of the same coin” as / a “feature-checking reflex” of ϕ-feature agreement
 – and this holds for ERG and ABS alike

• This is already trouble for a Chomsky (2000, 2001)-style account
 ◦ which ties case assignment to agreement directly

• But we already knew that such a theory doesn’t work —
 (see Bobaljik 2008, Preminger 2014, among many others)
 — and that, if anything, the computation of case is a prerequisite for the computation of agreement (see, e.g., Kornfilt & Preminger 2015)

Suppose we wanted to maintain that case, like agreement, is still head-driven (cf. Baker 2015)

◦ we could then try to handle these Chukchi data as follows:

(3)

TP

AspP

[base-generation of arguments]

T0

[agreement probe(s)]

Asp0

[case-assg. probe(s)]

vP

NB: We could have placed the relevant case probe(s) on v0, rather than Asp0 —

◦ but that would make the (undesirable) prediction that any predicate XP containing an Agent DP would exhibit the same case pattern as finite matrix clauses

◦ worried about English gerunds? first of all, it’s pretty clear that English is the wrong language to look at if you are interested in case (cf. Chomsky 1981, Marantz 1991); for further discussion, see §5.

⇒ So, what goes wrong with (3)?

◦ in what follows, I will try to convince you that (3) is not how we want to model this

+++ in particular, I will argue that:
 – the structural point at which “finite-esque” ϕ-agreement gets added / chopped off is crosslinguistically variable
 – but the structural point at which “finite-esque” case gets added / chopped off is crosslinguistically constant
 · or at least close enough to it to make it worth thinking about

◦ why is this a problem for something like (3)?
 – well, the crosslinguistic variability of the cutoff point for agreement means that (3) cannot be universal
 · in particular, which probes are located on which heads is a matter of crosslinguistic variation
⇒ but if the mechanism underlying agreement and case is fundamentally the same —
 (viz. a relation between a designated head and a DP)
 — why does the former vary in its locus, while the latter doesn’t?

3. Ch’ol: agreement is a survivor
 • In Chukchi (§2), it looked like agreement was “the first thing to go”
 • I then asserted that this was not a crosslinguistically stable property
 • In this section, I wish to demonstrate this, by way of Ch’ol (Mayan)

 • Here’s what simple, finite matrix clauses look like in Ch’ol:

 (4) a. Tyi y-il-ä-yety.
 PRFV 3ERG-SEE-TV-2ABS
 ‘She saw you.’
 b. Tyi uk’-i-yety.
 PRFV CRY-ITV-2ABS
 ‘You cried.’
 c. Tyi k-wäy-is-ä-yety.
 PRFV 1ERG-sleep-CAUS-DTV-2ABS
 ‘I made you sleep.’

 ◦ note, in particular, the (obligatory) clause-initial aspect marking
 – in this case, perfective

 • Now, Ch’ol has embedded clauses that are really just nominalized vPs
 ◦ this includes:
 – complements of so-called “imperfective aspect markers” (which, syntactically, are embedding predicates in Ch’ol)
 – complements of certain intensional predicates, like om (“want”)
 ◦ see Coon (2013) and Coon (to appear), respectively, for detailed arguments that these embedded clauses are indeed nominalized vPs

 (5) a. Mejl [i-k’el-oñ]
 be.able.to 3ERG-SEE-1ABS
 ‘She can see me.’
 b. Choñkol [k-mek’-ety]
 PROG 1ERG-hug-2ABS
 ‘I am hugging you.’

 ◦ note, in particular, the (obligatory) clause-initial aspect marking
 – in this case, perfective

 (6) K-om [k-mek’-ety]
 1ERG-want 1ERG-hug-2ABS
 ‘I want to hug you.’

 ◦ crucially, absolutive agreement survives even in these tiny clauses(“clauselets”?)

NB: One might be tempted to count the survival of ergative agreement in examples like (5–6) among the evidence for the crosslinguistically variable cutoff point for agreement; however . . .
 ◦ ergative- and genitive-agreement are systematically syncretic throughout Mayan
 ⇒ it takes special care to discern whether what we’re looking at is true ergative agreement (as Coon argues is the case for (6) but not (5)), or simply agreement with a nominal possessor
 ◦ crucially, no such confound exists for absolutive agreement in Ch’ol
4. Georgian: no (verbal) case without aspect

- In Georgian, there is a type of nominalization (the “masdar”) that is very similar to what we just saw in Ch’ol
 - consisting of a nominalized vP—and, crucially, lacking AspP, as well as TP (Nash to appear; see also Harris 1981, Wier 2014)
- This is exemplified in (9a–b):

 (7) a. vano-m Čam-a kada-φ
 Vano-ERG eat-AOR.3sg cake-NOM
 ‘Vano ate a cake.’
 b. vano-m Cam-o-s kada-φ
 Vano-ERG eat-SUBJ.3sg cake-NOM
 ‘Vano eat a cake.’

 (8) a. vano-φ Čam-φ-s kada-s
 Vano-NOM eat-TS.3sg cake-ACC
 ‘Vano is eating a cake.’
 b. vano-φ Čam-φ-da kada-s
 Vano-NOM eat-TS-PAST.3sg cake-ACC
 ‘Vano is was eating a cake.’

 (9) a. ga=v-igon-e [nino-s/*m/*-φ laParaK] -i.
 PREV=1-hear-AOR Nino-GEN/*-ERG/*-NOM talking -NOM
 ‘I heard Nino(’s) talking.’
 PREV=1-hear-AOR Nino-GEN by Vano-GEN praising -NOM
 ‘I heard Nino(’s) praising (of) Vano.’

- Whether you think that, case-wise, these reduced clauses should behave like perfective (7a–b) or imperfective (8a–b) —
 - the case pattern in (9a–b) doesn’t match either one

5. What about English?

- What about English poss-ing and acc-ing gerunds (see Abney 1987, Kratzer 1996, a.o.)?
 - don’t these instantiate “finite-esque” case in a smaller-than-AspP structure?
- No.
 - for one thing—and I cannot stress this enough—English is not the language you look at if you’re interested in learning anything about case
 - we, as a field, have made that mistake before
 - more to the point, none of these gerunds contain nom arguments
 - meaning they don’t, in fact, instantiate a “finite-esque” case pattern
 - and as for acc, its distribution in English is arguably that of unmarked case, rather than dependent case
 - it is available to any DP not governed³ by T⁰ or D⁰
 (see, e.g., Sobin 1997:336)

⇒ All in all, given the distribution of nom and acc in English, it doesn’t seem like there’s anything particularly “finite-esque” about the case patterns found in English gerunds
- nor do we expect there to be, given the absence of T⁰ there³

²Feel free to replace governed with whatever more contemporary structural relation you think would do the same work.

³I depart, here, from Abney (1987) and Kratzer (1996) and assume that even acc-ing gerunds—which they assume are structurally the largest—are only as big as AspP, lacking a TP layer.
6. **Interim summary & desiderata**

- What we have seen so far is the following:
 - when clauses are syntactically reduced, the point at which “finite” \(\varphi \)-agreement disappears is crosslinguistically variable
 - in some instances, agreement goes away as soon as you have anything smaller than a TP (*Chukchi*)
 - in others, it survives into even the smallest deverbal nominalizations (*Ch’ol*)
 - whereas the point at which “finite” case goes away seems constant, at least in the (very) small sample we’ve looked at
 - namely: finite case pattern \(\iff \) structure is at least as big as AspP

[.] In what follows, I’m going to treat these as desiderata, and see what kind of theory of case & agreement would deliver these results

7. **Contextual variability in the spellout of unmarked case**

- *Marantz (1991)*: an empirically adequate theory of case cannot be based (entirely) in notions like *government* / *local c-command* / etc.
 - instead, it requires a *configurational* component
 - where case is assigned to a DP as a function of its structural configuration relative to other DPs in its local domain

[see also: Bittner & Hale 1996, Yip et al. 1987, Zaenen et al. 1985]

![Disjunctive case hierarchy](image)

Marantz 1991

Lexical/oblique case \(\gg \) Dependent case \(\gg \) Unmarked case

- If you are unfamiliar with what these different categories of case refer to, here’s a quick cheatsheet:
 - *unmarked case*: NOM/ABS/GEN
 - *dependent case*: ACC/ERG
 - *lexical/oblique case*: everything else (e.g. DAT, INSTR, …)

[.] In Marantz’s system, these three categories of case are assigned sequentially:
 - first, *lexical/oblique case* is assigned to any argument of a head that is idiosyncratically specified for case
 - e.g. complements of prepositions, arguments of quirky-case verbs
 - next, for every pair of as-of-yet caseless DPs that stand in a local, asymmetric c-command relation, *dependent case* is assigned to one of them
 - whether it is the (hierarchically) higher or lower one that receives this case is determined parametrically
 - finally, all remaining caseless DPs are assigned *unmarked case*

[.] I want to stress:
 - this is not some ‘alternative’ way of calculating case
 - this is, up to implementational subtleties, the *only* empirically adequate way of doing so (see Marantz 1991 for the argument)

NB: If you are worried, given that Marantz’s posits that this whole calculus occurs post-syntactically, how it could replace *government*-based case theories (and their intellectual successors), please see the APPENDIX.

- Now, what I’d like to focus in on is the distinction between NOM/ABS on the one hand, and GEN on the other:
 - in a language where these two cases receive different morphological expression, something must distinguish between them
 - and given Marantz’s algorithm, the two can’t be distinguished based on how they arise
 - since they are both bona fide instances of *unmarked case*
 - they are distinguished by where they arise:
 - NOM/ABS is the spellout of *unmarked case* in the ‘clausal’ domain
 - GEN is the spellout of *unmarked case* in the ‘nominal’ domain

[.] The begged question:
 - how are ‘clausal’ and ‘nominal’ defined, here?
Proposal:

(11) A domain is ‘clausal’ (for case purposes) iff it is at least as big as AspP.

So, for example:

- In the Chukchi gerunds we saw, there was arguably aspectual specification (recall the obligatory “simultaneity” interpretation)

(12) a. aywe [ga-taykə-ma kupren] y'arəty penyiwi-t-g?e yesterday GA-make-MA net(ABS) extremely 1sg-be.exhausted-AOR ‘I got very tired yesterday, making a net.’

b. [gam-nan ga-lqagnaw-ma] aček čıpət-g?e
 1sg-ERG GA-shoot-MA duck(ABS) dive-AOR ‘As I shot (at it), the duck dived.’

c. [əpənač-e taykə-ma orwor] əniqey an-ok qaca
 old.man-ERG make-MA sled(ABS) boy(ABS) 3sg-LOC near
 3sg-PRES-stand-3sg-PRES ‘While the old man was making a sled, the boy was standing next to him.’

- and if that means these gerunds are at least as big as AspP:
 - the spellout of unmarked case (as well as of dependent case) will be the same as it would be in a full-fledged, finite matrix clause

- In the Georgian case, on the other hand, the relevant structures have been argued (by Nash and others) to lack aspect altogether:

(13) a. ga=v-igon-e [nino-s /*-m/*-φ] laParaK -i.
 PROV=1-hear-AOR Nino-GEN/*-ERG/*-NOM talking -NOM ‘I heard Nino’s talking.’

 PROV=1-hear-AOR Nino-GEN by Vano-GEN praising -NOM ‘I heard Nino’s praising (of) Vano.’

- the relevant domains are therefore not ‘clausal’

- or because of the presence of a nominalizer —

8. Agreement is not like case

- In contrast to case, which is configurational, agreement is not:
 - it is triggered by the presence of unvalued ϕ-features on a head
 - When a head bearing such features is merged, the already-present structure is scanned for a valued version of the same feature
 - yielding the familiar c-command requirement on agreement (see Preminger & Polinsky 2015 for a recent review)

- Crucially, we know that which heads carry which features is subject to crosslinguistic variability—at least when it comes to ϕ-features

 - one argument for this conclusion will be reproduced in §9

⇒ We therefore expect that the cutoff point for the size of a reduced clause at which ϕ-agreement disappears will be crosslinguistically variable
 - e.g. it could be T₀ in Chukchi, but v₀ in some other language…

- and this is precisely what we saw for, e.g., the Chukhi reduced clauses in (12) (arguably at least as big as AspP) vs. the Ch’ol ones in (14–15) (arguably instances of nominalized vP):

(14) a. Mej [i-k’el-oñ].
 PROG 1ERG-see-1ABS be.able.to ‘She can see me.’

b. Choñkol [k-mek’-ety].
 PROG 1ERG-hug-2ABS ‘I am hugging you.’

(15) K-om [k-mek’-ety].
 1ERG-want 1ERG-hug-2ABS
 ‘I want to hug you.’

4Or the feature-geometric counterpart thereof; see Preminger (2014:47–49) for discussion.
9. An argument for crosslinguistic variation in the placement of unvalued ϕ-features

- The Person Case Constraint (PCC): 6

(16) a. Zuk niri liburu-a saldu you.erg me.dat book-art$_{sg}$(abs) sold d-i-ϕ-da-zu. (Basque)

‘You have sold the book to me.’

b. * Zuk harakin-ari ni saldu you.erg butcher-art$_{sg}$,dat me(abs) sold (n-(a)i)-ϕ-o-zu.

‘You have sold me to the butcher.’ [Laka 1996]

(17) PCC$_{\text{strong}}$

- 1st/2nd person direct object in the presence of an indirect object

The PCC is a syntactic effect, not a morphological one

- Evidence: (Albizu 1997, Rezac 2008)

 - Basque has two classes of 2-place unaccusatives
 - one class where DAT \gg ABS, and one class where ABS \gg DAT

(18) DAT \gg ABS:

 Kepa-dat his head-art$_{sg}$(abs) come-prog aux

 ‘Kepa likes himself.’

b. * Kepa bere buru-a-ri gustatzen zako.

 Kepa(abs) his head-art$_{sg}$,dat liking aux

(19) ABS \gg DAT:

 Kepa-dat his head-art$_{sg}$(abs) come-prog aux

 ispliu-a-n.

 ‘Kepa is approaching himself in the mirror.’

 Miren(abs) his/her head-art$_{sg}$,dat talk-prt aux

 ‘Miren talked to herself.’ [Rezac 2008:75; see also Elordieta 2001]

⇒ but crucially, only the DAT \gg ABS ones show the PCC:

(20) a. Miren-i gozoki-ak gusta-tzen ϕ-zai-zki-o.

 Miren-dat sweet-art$_{pl}$(abs) like-impf 3.abs-$\sqrt{-pl}$,abs-3sg,dat

 ‘Miren likes candy.’

b. * Miren-i gusta-tzen na-tzai-ko me(abs) Miren-dat like-impf 1.abs-$\sqrt{-sg}$,abs-3sg,dat

 ‘Miren likes me.’

(21) Ni Peru-ri hurbildu na-tzai-ϕ-o.

 me(abs) Peru-dat approach 1.abs-$\sqrt{-sg}$,abs-3sg,dat

⇒ this shows that the PCC is fundamentally syntactic:

 - the morphological “target forms” in (20b) and in (21) are identical
 - and the distinction is in the hierarchical organization of arguments

(22)
But the PCC is notoriously absent in environments that do not show overt \(\varphi \)-feature agreement of some kind (clitic doubling not excepted):

this is so crosslinguistically (i.e., no PCC in languages without internal-argument agreement):

(23) ha-menahel-et ta-cig lahem oti the-manager-F FUT.3sg.F-introduce DAT.3sg.ACC:introduce
‘The manager will introduce me to them.’

but also intra-linguistically (even in a language with PCC effects, they go away in an agreement-less environment, e.g., infinitives):

(24) a. Zuk niri liburu-a sold
you.ERG me.DAT book-ART\textsubscript{sg}(ABS) sold
\[=\text{(16a–b)}\]

b. *Zuk harakin-ari ni saldu
you.ERG butcher-ART\textsubscript{sg}.DAT me(ABS) sold
\[=\text{(16a–b)}\]

‘You have sold the book to me.’

(25) Gaizki iruditzen \(\varphi \)-zai-\(\varphi \)-t
[zuk ni
wrong look-IMP\textsubscript{f}
3.ABS-\(\varphi \)-sg.ABS-1sg.DAT you.ERG me(ABS)
harakin-ari sold\textsubscript{nomz}-ART\textsubscript{sg}(ABS)
butcher-ART\textsubscript{sg}.DAT sold-NMZ-ART\textsubscript{sg}(ABS)
‘It seems wrong to me for you to sell me to the butcher.’ [Laka 1996]

If the PCC is syntactic, a result of agreement and dative intervention;

And it is absent wherever there is no internal-argument agreement;

\[\Rightarrow\] There must not be \(\varphi \)-features at all (not even unexponed ones!) on the relevant functional projections in situations where the PCC is absent.

That, in turn, means that we have to countenance crosslinguistic variation in the placement of unvalued \(\varphi \)-features.

10. Conclusion

- It looks like as we reduce the size of clausal structures, the cutoff point for “finite-esque” \(\varphi \)-agreement is variable;
- Whereas the cutoff point for “finite-esque” case seems more or less fixed.
- Insofar as this is correct, we saw tandem theories of case & agreement that are able to deliver this desideratum
 - a configurational theory of case (Marantz 1991, a.o.)
 - in which the spellout of a particular case-category (e.g. unmarked case) is subject to contextual variability
 - based on the nature of the enclosing domain (‘clausal’/‘nominal’)
 - a head-driven theory of \(\varphi \)-agreement (Chomsky 2000, 2001 and everything that follows its lead)
 - in which \(\varphi \)-agreement is driven by the presence of unvalued \(\varphi \)-features on a given head
 - and, crucially, the placement of unvalued \(\varphi \)-features on functional heads is subject to crosslinguistic variability
- Each of these sub-theories enjoys some independent support;
- In particular, I’d like to highlight:
 - the contextual variability of case spellout is needed already in Marantz 1991 to capture the distribution of \textsc{nom}/\textsc{abs} vs. \textsc{gen}
 - crosslinguistic variability in the placement of unvalued \(\varphi \)-features is a direct consequence of Albizu’s (1997) and Rezac’s (2008) findings on the behavior of the PCC in two-place unaccusatives
- Big, open question:
 - What is special about AspP that makes it the defining point for ‘clausality’?

Acknowledgements: Thanks to Maria Polinsky for helpful discussion. All errors are my own.
Appendix: Configurational case, computed syntactically

Assuming a bottom-up approach to syntactic structure building:

- The first syntactic relation that a DP (once built) has an opportunity to participate in is the relation with whatever head (c-)-selects it

(26) **LEXICAL/OBLIQUE CASE – CASE ASSIGNED UPON FIRST MERGER**

- If the head in question happens to be lexically specified to assign some case to its complement (think *listen* vs. *hear*):
 - the DP in a configuration like (26) will have its case features valued according to what is lexically specified on the selecting head

Importantly:

If we indeed think of this in terms of feature valuation *per se*, we derive:

(i) the fact that case assigned by a selecting head takes precedence over other kinds of case (in the same clause)

(ii) the fact that once assigned, such case cannot be overridden (in a higher clause)

- because valuation is a “one-off”: once you have a value, you are no longer unvalued, thus no longer eligible for valuation
- these are not new ideas, of course, and a lot of this borrows heavily from conventional treatments of inherent case

⇒ where things become interesting is in contrasting this with the other two components of the disjunctive case hierarchy, viewed from this feature-valuation perspective

- On the opposite side of the spectrum:
 - a DP that has gone through the course of the entire derivation without valuing its case features will be given the spellout characteristic of reaching PF with those features still unvalued
 - namely, as what we have come to call “nom”/ “abs” of “gen”
 - cf.: “3rd person singular” in the domain of φ-features
 (this characteristic spellout may or may not be null, depending on language-specific morphophonology)
 - this is why cases like nom can be overridden in the course of the derivation:
 - “nom”/ “abs”/ “gen” ≡ a state of non-valuation
 ⇒ subsequent valuation would change this state.

- Sandwiched between these two, in terms of the derivational sequence, is dependent case

 - in this system, dependent case is case that is assigned to a DP by virtue of standing in an asymmetric c-command relation with another as-of-yet-caseless DP
 - it is, in a sense, an indication that:
 - “I have (been) c-commanded (by) another DP with unvalued case features in the course of the derivation.”

(27) **DEP. CASE: UPWARD → “ERG”** (28) **DEP. CASE: DOWNWARD → “ACC”**
Like any other syntactic relation, (27–28) cannot obtain if a locality boundary intervenes between the two DPs in question
- in particular: the boundary of a CP, PP, or other DP

Even so, dependent case seems like an outlier in the landscape of syntax in a different sense—namely, because it is a phrase-to-phrase relation
- as opposed to the head-to-phrase relations that we are used to

This has led some to propose that it involves an “intermediary”—
- implementing what looks like a phrase-to-phrase relation as two, separate head-to-phrase relations, with one and the same head (see, e.g., Bittner & Hale 1996)

However, Baker & Vinokurova (2010:617–619) demonstrate that such an approach is on the wrong track (based on data from Sakha)

⇒ A case like \(\text{acc} \) is just about getting into a configuration like (28).

Note: It appears, then, that dependent case is a direct relation between two phrasal categories, after all—unlike anything else we are familiar with… (except Binding Theory!)

In Marantz’s system, it had to be stipulated that:
- lexical/oblique case takes precedence over dependent case, which
 takes precedence over unmarked case

On the current approach, this is derived from the bottom-up nature of structure building:
- a DP will merge with the head that selects it before it ever has a chance to stand in a relation like (27–28)
⇒ if the selecting head is lexically specified to assign case, that will bleed dependent case assignment
 (since, as noted, valuation is a “one-off”)
- the effective configuration for dependent case assignment (abstracting away from directionality, i.e., “\(\text{acc} \)” vs. “\(\text{erg} \)”) is therefore (29)

(29) EFFECTIVE CONFIGURATION FOR DEPENDENT CASE

- finally, since “\(\text{nom} \)”/ “\(\text{abs} \)” are, by hypothesis, labels for non-valuation—
 - they would be bled by either lexical/oblique case (26) or dependent case (29)

- We thus derive the ordering stipulations embodied in Marantz’s (1991) disjunctive case hierarchy

One important lacuna (albeit, one that is inherited from Marantz):
- prepositional complementizers

⇒ Might mean that we have to accept some residue of case assignment under government/local c-command by a designated functional head
 - even in the configurational model

Stay tuned.
References

Coon, Jessica. to appear. Little-v agreement and templatic morphology in Ch’ol. *Syntax*.

